
1

SSL / TLS Case Study

CS 259

Lecture 2
(January 8, 2004)

Overview

�Introduction to the SSL / TLS protocol
• Widely deployed, “real-world” security protocol

�Protocol analysis case study
• Start with the RFC describing the protocol
• Create an abstract model and code it up in Murϕ
• Specify security properties
• Run Murϕ to check whether security properties are

satisfied

�This lecture is a compressed version of what you
will be doing in your project!

What is SSL / TLS?

�Transport Layer Security protocol, ver 1.0
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers

�Based on Secure Sockets Layers protocol, ver 3.0
• Same protocol design, different algorithms

�Deployed in nearly every web browser

SSL / TLS in the Real World

History of the Protocol

�SSL 1.0
• Internal Netscape design, early 1994?
• Lost in the mists of time

�SSL 2.0
• Published by Netscape, November 1994
• Badly broken

�SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

�TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

Let’s Get Going…

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

RFC
(request for
comments)

2

Request for Comments

�Network protocols are usually disseminated in the
form of an RFC

�TLS version 1.0 is described in RFC 2246
�Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers

who will be implementing it and those who will be
doing protocol analysis (that’s you!)

• Mixture of informal prose and pseudo-code

�Read some RFCs to get a flavor of what protocols
look like when they emerge from the committee

Evolution of the SSL/TLS RFC

0

10

20

30

40

50

60

70

80

SSL 2.0 SSL 3.0 TLS 1.0

Page count

From RFC to Murϕ Model

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Murϕ code
RFC

TLS Basics

�TLS consists of two protocols
�Handshake protocol

• Use public-key cryptography to establish a shared
secret key between the client and the server

�Record protocol
• Use the secret key established in the handshake

protocol to protect communication between the client
and the server

�We will focus on the handshake protocol

TLS Handshake Protocol

�Two parties: client and server
�Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of

the protocol

�Authenticate client and server (optional)
• Use digital certificates to learn each other’s public keys

and verify each other’s identity

�Use public keys to establish a shared secret

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished

switch to negotiated cipher

Finished
switch to negotiated cipher

3

Abbreviated Handshake

�The handshake protocol may be executed in an
abbreviated form to resume a previously
established session
• No authentication, key material not exchanged
• Session resumed from an old state

�For complete analysis, have to model both full
and abbreviated handshake protocol
• This is a common situation: many protocols have

several branches, subprotocols for error handling, etc.

Rational Reconstruction

� Begin with simple, intuitive protocol
• Ignore client authentication
• Ignore verification messages at the end of the

handshake protocol
• Model only essential parts of messages (e.g., ignore

padding)

�Execute the model checker and find a bug
�Add a piece of TLS to fix the bug and repeat

• Better understand the design of the protocol

Protocol Step by Step: ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version he is running
• Cryptographic algorithms he supports

struct {
ProtocolVersion client_version;
Random random;
SessionID session_id;
CipherSuite cipher_suites;
CompressionMethod compression_methods;

} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Cryptographic algorithms
supported by the client (e.g.,

RSA or Diffie-Hellman)

ClientHello (Murϕ)

ruleset i: ClientId do
ruleset j: ServerId do
rule "Client sends ClientHello to server (new session)"
cli[i].state = M_SLEEP &
cli[i].resumeSession = false

==>
var
outM: Message; -- outgoing message

begin
outM.source := i;
outM.dest := j;
outM.session := 0;
outM.mType := M_CLIENT_HELLO;
outM.version := cli[i].version;
outM.suite := cli[i].suite;
outM.random := freshNonce();
multisetadd (outM, cliNet);
cli[i].state := M_SERVER_HELLO;

end;
end;

end;

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version both client &

server support
• Strongest cryptographic suite selected

from those offered by the client

4

ServerHello (Murϕ)

ruleset i: ServerId do
choose l: serNet do
rule “Server receives ServerHello (new session)"

ser[i].clients[0].state = M_CLIENT_HELLO &
serNet[l].dest = i &
serNet[l].session = 0

==>
var

inM: Message; -- incoming message
outM: Message; -- outgoing message

begin
inM := serNet[l]; -- receive message
if inM.mType = M_CLIENT_HELLO then

outM.source := i;
outM.dest := inM.source;
outM.session := freshSessionId();
outM.mType := M_SERVER_HELLO;
outM.version := ser[i].version;
outM.suite := ser[i].suite;
outM.random := freshNonce();
multisetadd (outM, serNet);
ser[i].state := M_SERVER_SEND_KEY;

end; end; end;

ServerKeyExchange

C

Versions, suites, Ns,
ServerKeyExchange

SServer responds with his public-key
certificate containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

“Abstract” Cryptography

�We will use abstract data types to model
cryptographic operations
• Assumes that cryptography is perfect
• No details of the actual cryptographic schemes
• Ignores bit length of keys, random numbers, etc.

�Simple notation for encryption, signatures, hashes
• {M}k is message M encrypted with key k
• sigk(M) is message M digitally signed with key k
• hash(M) for the result of hashing message M with a

cryptographically strong hash function

ClientKeyExchange

C

Versions, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key

struct {
select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;

} exchange_keys
} ClientKeyExchange

struct {
ProtocolVersion client_version;
opaque random[46];

} PreMasterSecret

ClientKeyExchange (RFC)

Let’s model this as {Secretc}Ks

“Core” SSL

C

Versions, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc

If the protocol is correct, C and S share
some secret key material secretc at this point

switch to key derived
from secretc

5

Participants as Finite-State Machines

M_SLEEP
ClientHello

Murϕ rules define a finite-state machine for each protocol participant

Client state

M_SERVER_HELLO

M_SERVER_KEY

M_SEND_KEY

M_CLIENT_HELLO

Server state

M_SEND_KEY

M_CLIENT_KEY

M_DONE

ServerHello

ServerKeyExchange

ClientKeyExchange

Intruder Model

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Murϕ code
RFC

Murϕ code,
similar for

all protocols

Intruder Can Intercept

�Store a message from the network in the data
structure modeling intruder’s “knowledge”

ruleset i: IntruderId do
choose l: cliNet do
rule "Intruder intercepts client's message"
cliNet[l].fromIntruder = false

==>
begin
alias msg: cliNet[l] do -- message from the net
…
alias known: int[i].messages do

if multisetcount(m: known,
msgEqual(known[m], msg)) = 0 then

multisetadd(msg, known);
end;

end;
end;

Intruder Can Decrypt if Knows Key

�If the key is stored in the data structure modeling
intruder’s “knowledge”, then read message
ruleset i: IntruderId do
choose l: cliNet do
rule "Intruder intercepts client's message"
cliNet[l].fromIntruder = false

==>
begin
alias msg: cliNet[l] do -- message from the net
…
if msg.mType = M_CLIENT_KEY_EXCHANGE then

if keyEqual(msg.encKey, int[i].publicKey.key) then
alias sKeys: int[i].secretKeys do

if multisetcount(s: sKeys,
keyEqual(sKeys[s], msg.secretKey)) = 0 then
multisetadd(msg.secretKey, sKeys);

end;
end;

end;

Intruder Can Create New Messages

�Assemble pieces stored in the intruder’s
“knowledge” to form a message of the right format
ruleset i: IntruderId do
ruleset d: ClientId do
ruleset s: ValidSessionId do
choose n: int[i].nonces do
ruleset version: Versions do
rule "Intruder generates fake ServerHello"

cli[d].state = M_SERVER_HELLO
==>
var
outM: Message; -- outgoing message

begin
outM.source := i; outM.dest := d; outM.session := s;
outM.mType := M_SERVER_HELLO;
outM.version := version;
outM.random := int[i].nonces[n];
multisetadd (outM, cliNet);

end; end; end; end;

Intruder Model and Cryptography

�There is no actual cryptography in our model
• Messages are marked as “encrypted” or “signed”, and

the intruder rules respect these markers

�Our assumption that cryptography is perfect is
reflected in the absence of certain intruder rules
• There is no rule for creating a digital signature with a

key that is not known to the intruder
• There is no rule for reading the contents of a message

which is marked as “encrypted” with a certain key,
when this key is not known to the intruder

• There is no rule for reading the contents of a “hashed”
message

6

Running Murϕ Analysis

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Murϕ code
RFC

Murϕ code,
similar for

all protocols

Specify security
conditions and run Murϕ

Secrecy

�Intruder should not be able to learn the secret
generated by the client
ruleset i: ClientId do
ruleset j: IntruderId do
rule "Intruder has learned a client's secret"
cli[i].state = M_DONE &
multisetcount(s: int[j].secretKeys,

keyEqual(int[j].secretKeys[s], cli[i].secretKey)) > 0
==>
begin
error "Intruder has learned a client's secret"

end;
end;

end;

Shared Secret Consistency

�After the protocol has finished, client and server
should agree on their shared secret
ruleset i: ServerId do
ruleset s: SessionId do
rule "Server's shared secret is not the same as its client's"

ismember(ser[i].clients[s].client, ClientId) &
ser[i].clients[s].state = M_DONE &
cli[ser[i].clients[s].client].state = M_DONE &
!keyEqual(cli[ser[i].clients[s].client].secretKey,

ser[i].clients[s].secretKey)
==>
begin
error "S's secret is not the same as C's"

end;
end;

end;

Version and Crypto Suite Consistency

�Client and server should be running the highest
version of the protocol they both support
ruleset i: ServerId do
ruleset s: SessionId do
rule "Server has not learned the client's version or suite correctly"
!ismember(ser[i].clients[s].client, IntruderId) &
ser[i].clients[s].state = M_DONE &
cli[ser[i].clients[s].client].state = M_DONE &
(ser[i].clients[s].clientVersion != MaxVersion |
ser[i].clients[s].clientSuite.text != 0)

==>
begin
error "Server has not learned the client's version or suite correctly"

end;
end;

end;

Finite-State Verification

...
...

� Murϕ rules for protocol
participants and the intruder
define a nondeterministic state
transition graph

� Murϕ will exhaustively
enumerate all graph nodes

� Murϕ will verify whether
specified security conditions
hold in every reachable node

� If not, the path to the violating
node will describe the attack

Correctness
condition violated

When Does Murϕ Find a Violation?

�Bad abstraction
• Removed too much detail from the protocol when

constructing the abstract model
• Add the piece that fixes the bug and repeat
• This is part of the rational reconstruction process

�Genuine attack
• Yay! Hooray!
• Attacks found by formal analysis are usually quite

strong: independent of specific cryptographic
schemes, OS implementation, etc.

• Test an implementation of the protocol, if available

7

“Core” SSL 3.0

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc

If the protocol is correct, C and S share
some secret key material secretc at this point

switch to key derived
from secretc

Version Consistency Fails!

C

Versions=2.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

struct {
select (KeyExchangeAlgorithm) {

case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;

} exchange_keys
} ClientKeyExchange

struct {
ProtocolVersion client_version;
opaque random[46];

} PreMasterSecret

A Case of Bad Abstraction

Model this as {Versionc, Secretc}Ks

This piece matters! Need to add it to the model.

Fixed “Core” SSL

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

switch to key derived
from secretc

If the protocol is correct, C and S share
some secret key material secretc at this point

switch to key derived
from secretc

Prevents version
rollback attack

Add rule to check that received version
is equal to version in ClientHello

Basic Pattern for Doing Your Project

�Read and understand protocol specification
• Typically an RFC or a research paper
• We’ll put a few on the website: take a look!

�Choose a tool
• Murϕ by default, but we’ll describe many other tools
• Play with Murϕ now to get some experience

(installing, running simple models, etc.)

�Start with a simple (possibly flawed) model
• Rational reconstruction is a good way to go

�Give careful thought to security conditions

Background Reading on SSL 3.0

Optional, for deeper understanding of SSL / TLS

� D. Wagner and B. Schneier. “Analysis of the SSL 3.0 protocol.”
USENIX Electronic Commerce ’96.
• Nice study of an early proposal for SSL 3.0

� J.C. Mitchell, V. Shmatikov, U. Stern. “Finite-State Analysis of SSL
3.0”. USENIX Security ’98.
• Murϕ analysis of SSL 3.0 (similar to this lecture)
• Actual Murϕ model available

� D. Bleichenbacher. “Chosen Ciphertext Attacks against Protocols
Based on RSA Encryption Standard PKCS #1”. CRYPTO ’98.
• Cryptography is not perfect: this paper breaks SSL 3.0 by directly

attacking underlying implementation of RSA

