
1

Key Exchange Protocols

J. Mitchell

CS 259
Next few lectures

�Today
• Key exchange protocols and properties

�Thursday
• Cathy Meadows: GDOI

�Next Tues
• Contract-signing protocols

�Next Thurs
• More about contract signing

Talk about protocols for a while before looking at more tools

Key Management

�Out of band
• Can set up some keys this way (Kerberos)

�Public-key infrastructure (PKI)
• Leverage small # of public signing keys

�Protocols for session keys
• Generate short-lived session key
• Avoid extended use of important secret
• Don’t use same key for encryption and signing
• Forward secrecy

Cryptography reduces many problems to key management

Internet Standardization Process

�All standards published as RFC (Request for
Comment)
• Available: http://www.ietf.org
• Not all RFCs are Internet Standards !

�Typical path to standardization
• Internet Drafts
• RFC
• Proposed Standard
• Draft Standard (requires 2 working implementation)
• Internet Standard (declared by IAB)

�David Clark, MIT, 1992: "We reject: kings,
presidents, and voting. We believe in: rough
consensus and running code.”

Key Distribution: Kerberos Idea

Client

KeyCenter

Server

Shared symmetric key Kc

Shared
symmetric

key Ks

{Kcs, {K
cs}Ks}Kc

{Kcs}Ks { msg }Kcs

Key Center generates session key Kcs and
distributes using shared long-term keys

Public-Key Infrastructure

Certificate
Authority

Client Server

Known public signature verification key Ka

Sign(Ka, Ks), Sign(Ks, msg)

Certificate
Sign(Ka, Ks)

Ks

Server certificate can be verified
by any client that has CA key Ka

Certificate authority is “off line”

2

Key Exchange

�Parties may have initial information
�Generate and agree on session key

• Authentication – know ID of other party
• Secrecy – key not known to any others
• Avoid replay attack
• Forward secrecy
• Avoid denial of service
• Identity protection – disclosure to others
• Other properties you can think of???

Needham-Schroeder Lowe

{ A, NonceA }

{ NonceA, B, NonceB }

{ NonceB}

Ka

Kb

Alice, Bob share two private numbers
not known to any observer without Ka-1, Kb -1

Use concatenation (?) or XOR as session key

A B
Kb

Needham-Schroeder Lowe
{ A, NonceA }

{ NonceA, B, NonceB }

{ NonceB}

Ka

Kb

A B
Kb

Authentication?
Secrecy?
Replay attack
Forward secrecy?
Denial of service?
Identity protection?

Diffie-Hellman Key Exchange

�Assume finite group G = 〈S, •〉
• Generator g so every x∈S is x = gn

• Example: integers modulo prime p
�Protocol

ga mod p

gb mod pA B

Alice, Bob share gab mod p not known to anyone else

Diffie-Hellman Key Exchange

Authentication?
Secrecy?
Replay attack
Forward secrecy?
Denial of service?
Identity protection?

ga mod p

gb mod pA B

IKE subprotocol from IPSEC

A, (ga mod p)

B, (gb mod p)

Result: A and B share secret gab mod p

Signatures provide authentication, as long as signature
verification keys are known

A B

m1

m2
, signB(m1,m2)

signA(m1,m2)

3

IPSec: Network Layer Security

�Authentication Header (AH)
• Access control and authenticate data origins
• replay protection
• No confidentiality

�Encapsulated Secure Payload (ESP)
• Encryption and/or authentication

�Internet Key management (IKE)
• Determine and distribute secret keys
• Oakley + ISAKMP
• Algorithm independent

�Security policy database (SPD)
• discarded, or bypass

IKE: Many modes

�Main mode
• Authentication by pre-shared keys
• Auth with digital signatures
• Auth with public-key encryption
• Auth with revised public-key encryption

�Quick mode
• Compress number of messages
• Also four authentication options

Aug 2001 Position Statement

� In the several years since the standardization of
the IPSEC protocols (ESP, AH, and ISAKMP/IKE),
… several security problems…, most notably IKE.

�Formal and semi-formal analyses by Meadows,
Schneier et al, and Simpson, have shown … security
problems in IKE stem directly from its complexity.

�It seems … only a matter of time before serious
implementation problems become apparent, again
due to the complex nature of the protocol, and the
complex implementation that must surely follow.

�The Security Area Directors have asked the
IPSEC working group to come up with a
replacement for IKE.

How to study complex protocol

General Problem in Security

�Divide-and-conquer is fundamental
• Decompose system requirements into parts
• Develop independent software modules
• Combine modules to produce required system

�Common belief:
• Security properties do not compose

Difficult system development problem

Example protocol

Protocol P1
A → B : {message}KB
A → B : KA-1

�This satisfies basic requirements
• Message is transmitted under encryption
• Revealing secret key KA-1 does not reveal

message

4

Similar protocol

Protocol P2
B → A : {message’}KA
B → A : KB-1

�Transmits msg securely from B to A
• Message is transmitted under encryption
• Revealing secret key KB-1 does not reveal

message

Composition P1; P2

�Sequential composition of two protocols
A → B : {message}KB
A → B : KA-1

B → A : {message’}KA
B → B : KB-1

�Definitely not secure
• Eavesdropper learns both keys, decrypts

messages

Basic challenge-response

CR

CR-E

CR-S1 CR-E1

NSL0STS0

CR-S

STS family

m=gx, n=gy
k=gxy

STS0H

STSa STSaH

STSHSTS

STS0

STSPH

JFK1

distribute
certificates

cookie

open
responder

JFK0

symmetric
hash

JFK

protect
identities

RFK

STSP

Example

�Construct protocol with properties:
• Shared secret
• Authenticated
• Identity Protection
• DoS Protection

�Design requirements for IKE, JFK,
IKEv2 (IPSec key exchange protocol)

Component 1

�Diffie-Hellman
A → B: ga

B → A: gb

• Shared secret (with someone)
– A deduces:

Knows(Y, gab) ⊃ (Y = A) ٧ Knows(Y,b)
• Authenticated
• Identity Protection
• DoS Protection

5

Component 2

�Challenge Response:
A → B: m, A
B → A: n, sigB {m, n, A}
A → B: sigA {m, n, B}

• Shared secret (with someone)
• Authenticated

– A deduces: Received (B, msg1) Λ Sent (B, msg2)
• Identity Protection
• DoS Protection

Composition

�ISO 9798-3 protocol:
A → B: ga, A
B → A: gb, sigB {ga, gb, A}
A → B: sigA {ga, gb, B}

• Shared secret: gab
• Authenticated
• Identity Protection
• DoS Protection

m := ga

n := gb

Refinement

�Encrypt signatures:
A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B: EK {sigA {ga, gb, B}}

• Shared secret: gab
• Authenticated
• Identity Protection
• DoS Protection

Transformation

�Use cookie: JFK core protocol
A → B: ga, A
B → A: gb, hashKB {gb, ga}
A → B: ga, gb, hashKB {gb, ga}

EK {sigA {ga, gb, B}}
B → A: gb, EK {sigB {ga, gb, A}}

• Shared secret: gab
• Authenticated
• Identity Protection
• DoS Protection

(Here B must store b in step 2, but we’ll fix this later…)

Cookie transformation

�Typical protocol
• Client sends request to server
• Server sets up connection, responds
• Client may complete session or not (DOS)

�Cookie version
• Client sends request to server
• Server sends hashed data back

– Send message #2 later after client confirms
• Client confirms by returning hashed data
• Need extra step to send postponed message

Cookie in JFK

�Protocol susceptible to DOS
A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B: EK {sigA {ga, gb, B}}

�Use cookie: JFK core protocol
A → B: ga, A
B → A: gb, hashKB {gb, ga}
A → B: ga, gb, hashKB {gb, ga}, eh2
B → A: gb, eh1

eh1

eh2

6

Efficiency: Reuse D-H key

�Costly to compute ga, gb, gab

�Solution
• Keep medium-term ga, gb (change ~10 min)
• Replace ga by pair ga, nonce

�JFKi, JFKr protocols (except cert or grpinfo, …)
A → B: Na, ga, A
B → A: Nb, gb, hashKB {Nb, Na, gb, ga}
A → B: Na, Nb, ga, gb, hashKB {Nb, Na, gb, ga},

EK {sigA {Na, Nb, ga, gb, B}}
B → A: gb, EK {sigB {Na, Nb, ga, gb, A}}

Note: B does not need to store any short-term data in step 2

Conclusion

�Many protocol properties
• Authentication Secrecy
• Prevent replay Forward secrecy
• Denial of service Identity protection

�Systematic understanding is possible
• But be careful; easy to make mistakes
• State of the art:

need to analyze complete protocol

