

# Next few lectures ◆Today Key exchange protocols and properties ◆Thursday · Cathy Meadows: GDOI ♦Next Tues Contract-signing protocols ◆Next Thurs More about contract signing Talk about protocols for a while before looking at more tools

# Key Management ♦Out of band Can set up some keys this way (Kerberos) ◆Public-key infrastructure (PKI) Leverage small # of public signing keys ◆Protocols for session keys • Generate short-lived session key · Avoid extended use of important secret • Don't use same key for encryption and signing Forward secrecy Cryptography reduces many problems to key management





- ◆ All standards published as RFC (Request for Comment)
  - Available: http://www.ietf.org
  - Not all RFCs are Internet Standards!
- ◆ Typical path to standardization
  - Internet Drafts

  - Proposed Standard
  - Draft Standard (requires 2 working implementation)
    Internet Standard (declared by IAB)
- ◆ David Clark, MIT, 1992: "We reject: kings, presidents, and voting. We believe in: rough consensus and running code."

# Key Exchange ◆Parties may have initial information ◆Generate and agree on session key · Authentication - know ID of other party · Secrecy - key not known to any others · Avoid replay attack · Forward secrecy · Avoid denial of service · Identity protection - disclosure to others · Other properties you can think of???











# IPSec: Network Layer Security

- ◆ Authentication Header (AH)
  - · Access control and authenticate data origins

  - replay protectionNo confidentiality
- ◆ Encapsulated Secure Payload (ESP)
  - Encryption and/or authentication
- ◆Internet Key management (IKE)
  - Determine and distribute secret keys
  - · Oakley + ISAKMP
  - · Algorithm independent
- Security policy database (SPD)
  - discarded, or bypass

# IKE: Many modes

- ◆ Main mode
  - Authentication by pre-shared keys
  - Auth with digital signatures
  - Auth with public-key encryption
  - Auth with revised public-key encryption
- ◆Quick mode
  - Compress number of messages
  - Also four authentication options

# Aug 2001 Position Statement

- ◆ In the several years since the standardization of the IPSEC protocols (ESP, AH, and ISAKMP/IKE), ... several security problems..., most notably IKE.
   ◆ Formal and semi-formal analyses by Meadows, Schneier et al, and Simpson, have shown ... security problems in IKE stem directly from its complexity.
- \*It seems ... only a matter of time before serious
  \*implementation\* problems become apparent, again
  due to the complex nature of the protocol, and the
  complex implementation that must surely follow.
- ◆ The Security Area Directors have asked the IPSEC working group to come up with a replacement for IKE.

# How to study complex protocol

# General Problem in Security

### ◆Divide-and-conquer is fundamental

- Decompose system requirements into parts
- Develop independent software modules
- Combine modules to produce required system

### ◆Common belief:

• Security properties do not compose

# Example protocol

### Protocol P1

 $A \rightarrow B : \{message\}_{KB}$ 

 $A \rightarrow B : KA^{-1}$ 

### ♦ This satisfies basic requirements

- Message is transmitted under encryption
- Revealing secret key KA<sup>-1</sup> does not reveal message

# Similar protocol

### Protocol P2

 $B \rightarrow A : \{message'\}_{KA}$ 

 $B \rightarrow A : KB^{-1}$ 

### ◆Transmits msg securely from B to A

- Message is transmitted under encryption
- Revealing secret key KB<sup>-1</sup> does not reveal message

# Composition P1; P2

◆ Sequential composition of two protocols

 $A \rightarrow B : \{message\}_{KB}$ 

 $A \rightarrow B : KA^{-1}$ 

 $B \rightarrow A : \{\text{message'}\}_{KA}$ 

 $B \rightarrow B : KB^{-1}$ 

### ◆Definitely not secure

• Eavesdropper learns both keys, decrypts messages

# Basic challenge-response



# STS family



# Example

### ◆Construct protocol with properties:

- Shared secret
- Authenticated
- Identity Protection
- DoS Protection
- ◆Design requirements for IKE, JFK, IKEv2 (IPSec key exchange protocol)

# Component 1

◆Diffie-Hellman

 $A \rightarrow B: g^a$ 

 $B \rightarrow A$ :  $g^b$ 

• Shared secret (with someone)

- A deduces:

 $Knows(Y, g^{ab}) \supset (Y = A) \lor Knows(Y,b)$ 

Authenticated

Identity Protection

DoS Protection

# Component 2

### ◆Challenge Response:

```
A \rightarrow B: m, A
B \rightarrow A: n, sig<sub>B</sub>{m, n, A}
A \rightarrow B: sig<sub>A</sub>{m, n, B}
```

- Shared secret (with someone)
- Authenticated
  - A deduces: Received (B, msg1)  $\Lambda$  Sent (B, msg2)
- Identity Protection
- DoS Protection

# Composition

m := g<sup>a</sup> n := g<sup>b</sup>

### ♦ISO 9798-3 protocol:

$$A \rightarrow B$$
:  $g^a$ ,  $A$   
 $B \rightarrow A$ :  $g^b$ ,  $sig_B \{g^a, g^b, A\}$   
 $A \rightarrow B$ :  $sig_A \{g^a, g^b, B\}$ 

- · Shared secret: gab
- Authenticated
- · Identity Protection
- DoS Protection

## Refinement

### ◆Encrypt signatures:

$$A \rightarrow B$$
:  $g^a$ ,  $A$   
 $B \rightarrow A$ :  $g^b$ ,  $E_k$  {sig<sub>B</sub> { $g^a$ ,  $g^b$ ,  $A$ }}  
 $A \rightarrow B$ :  $E_k$  {sig<sub>A</sub> { $g^a$ ,  $g^b$ ,  $B$ }}

- Shared secret: gab
- Authenticated
- Identity Protection
- · DoS Protection

### Transformation

### ◆Use cookie: JFK core protocol

- Shared secret: gab
- Authenticated
- · Identity Protection
- DoS Protection

(Here B must store b in step 2, but we'll fix this later...)

### Cookie transformation

### ◆Typical protocol

- · Client sends request to server
- Server sets up connection, responds
- Client may complete session or not (DOS)

### ◆Cookie version

- Client sends request to server
- Server sends hashed data back
  - Send message #2 later after client confirms
- · Client confirms by returning hashed data
- Need extra step to send postponed message

### Cookie in JFK

### ◆Protocol susceptible to DOS

$$\begin{array}{l} \textbf{A} \rightarrow \textbf{B} \colon \ \textbf{g}^{\textbf{a}}, \ \textbf{A} & \textbf{eh1} \\ \textbf{B} \rightarrow \textbf{A} \colon \ \textbf{g}^{\textbf{b}}, \ \textbf{E}_{\textbf{K}} \left\{ \textbf{sig}_{\textbf{B}} \left\{ \textbf{g}^{\textbf{a}}, \ \textbf{g}^{\textbf{b}}, \ \textbf{A} \right\} \right\} \\ \textbf{A} \rightarrow \textbf{B} \colon \ \textbf{E}_{\textbf{K}} \left\{ \textbf{sig}_{\textbf{A}} \left\{ \textbf{g}^{\textbf{a}}, \ \textbf{g}^{\textbf{b}}, \ \textbf{B} \right\} \right\} \end{array}$$

# ◆Use cookie: JFK core protocol

$$A 
ightarrow B$$
:  $g^a$ ,  $A$   $B 
ightarrow A$ :  $g^b$ , hash<sub>KB</sub>  $\{g^b, g^a\}$ 

$$A \rightarrow B$$
:  $g^a$ ,  $g^b$ , hash<sub>KB</sub>  $\{g^b, g^a\}$ , eh2

 $B \rightarrow A$ :  $g^b$ , eh1

# Efficiency: Reuse D-H key

- igspaceCostly to compute  $g^a$ ,  $g^b$ ,  $g^{ab}$
- ◆Solution
  - Keep medium-term g<sup>a</sup>, g<sup>b</sup> (change ~10 min)
     Replace g<sup>a</sup> by pair g<sup>a</sup>, nonce
- ◆JFKi, JFKr protocols (except cert or grpinfo, ...)

KI, JFKI protection  $A \rightarrow B$ : Na,  $g^a$ ,  $A \rightarrow B$ : Na,  $g^b$ , hash<sub>KB</sub> {Nb, Na,  $g^b$ ,  $g^a$ }  $A \rightarrow B$ : Na, Nb,  $g^a$ ,  $g^b$ , hash<sub>KB</sub> {Nb, Na,  $g^b$ ,  $g^a$ },  $E_K \{ sig_A \{ Na, Nb, g^a, g^b, B \} \}$ 

 $B \rightarrow \textit{A} \colon \ \textit{g}^{\textit{b}}, \ \textit{E}_{\textit{K}} \left\{ \textit{sig}_{\textit{B}} \left\{ \textit{Na}, \ \textit{Nb}, \ \textit{g}^{\textit{a}}, \ \textit{g}^{\textit{b}}, \ \textit{A} \right\} \right\}$ 

# Conclusion

- ◆Many protocol properties
  - Authentication Secrecy
  - Prevent replay Forward secrecy
  - Denial of service Identity protection
- ♦ Systematic understanding is possible
  - But be careful; easy to make mistakes
  - State of the art:

need to analyze complete protocol