
1

EXPERIENCES IN THE
FORMAL ANALYSIS OF THE

GDOI PROTOCOL

Catherine Meadows
Code 5543

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, DC 20375
meadows@itd.nrl.navy.mil

http://chacs.nrl.navy.mil

MOTIVATION AND
BACKGROUND

• Project started in 1999
• At that time, had long history of formal analysis of crypto

protocols (about 20 years, starting with Dolev and Yao work)
• Applied to lots of different types of problems
• Has had some real success

– Found previously undiscovered problems
• But (as of 1999) -- lack of impact on “real life” protocols

– Few examples to point to of formal analysis affecting
fielded product

• WHY?
• In this project, attempted to address this problem

OUR PLAN

• Work closely with standards developers as they draft
standard
– Give feedback as early in the standardization

process as possible
• Discuss any problems we found as they arose

– Allowed us to identify quickly which were real
problems and which arose from misunderstanding
of protocol

• Recommend fixes when appropriate

GROUP WE WORKED WITH

• Internet Engineering Task Force (IETF)
– Mostly volunteer standards group responsible for

internet protocol standards
– Made up of different working groups concentrating

on standards for different protocols
• Internet Research Task Force (IRTF)

– Research group attached to IETF
– Works on focussed research problems of interest

to IETF
• Secure Multicast Working Group (SMuG) in IRTF

– Devoted to protocols associated with secure
multicast

WHAT I’LL TALK ABOUT
TODAY

• How we worked with SMuG
• Protocol we worked on, GDOI
• A little background of formal methods for crypto

protocol analysis
• Tool we used, NRL Protocol Analyzer
• Technical challenges we faced
• The outcome so far
• A coda

HOW WE WORKED WITH
SMUG

• Attended SMuG meetings regularly
– Helped to

• Get to know SMuG members
• Learn about background of SMuG protocols
• Inform SMuG members of our own requirements

• Early on, picked Group Domain of Interpretation
(GDOI) protocol as a good candidate

• Used GDOI drafts as basis for formal specifications
as they came out

• When found problems or ambiguities, would discuss
them with authors
– Would often lead to new GDOI drafts

2

MULTICAST ARCHITECTURE
USED BY GDOI

GCKS

SA1

SA3SA3

SA1

SA1

SA1

SA2

SA2 SA2
Member
sender

Member
receiver

SA = “security association”
SA1 = pairwise key
SA2 = key encryption key (can
be key hierarchy, used for
access control)
SA3 = traffic encryption key

GDOI
• Protocol facilitating distribution of group keys by

Group Key Distribution Center (GCKS)
– Embodies SMuG framework and architecture

• Based on ISAKMP and IKE
– Standards developed for key exchange

• Protocol uses
– IKE to distribute Category-1 SAs (pairwise keys)
– Groupkey Pull Protocol initiated by member to

distribute Category-2 SAs (KEKs)
• May also distribute Category-3 Sas (TEKs)

– Groupkey push Datagram to distribute Category-2
and Category-3 SAs

GDOI PROTOCOLS
Groupkey Pull Protocol

Initiator (Member) Responder (GCKS)

------------------ ----------------

HDR*, HASH(1), Ni, ID -->

<-- HDR*, HASH(2), Nr, SA

HDR*, HASH(3) [, KE_I] -->

[,CERT] [,POP_I]

<-- HDR*, HASH(4), [KE_R,] SEQ,

KD [,CERT] [,POP_R]

Hashes are computed as follows:

HASH(1) = prf(SKEYID_a, M-ID | Ni | ID)

HASH(2) = prf(SKEYID_a, M-ID | Ni_b | Nr | SA)

HASH(3) = prf(SKEYID_a, M-ID | Ni_b | Nr_b [| KE_I] | POP_I)

HASH(4) = prf(SKEYID_a, M-ID | Ni_b | Nr_b [| KE_R] | SEQ | KD | POP_R)

Groupkey Push Message

Member GCKS or Delegate

------ ----------------

<---- HDR*, SEQ, SA, KD, [CERT,] SIG

• Key hierarchies can be used to prevent expelled
member from learning new key-encryption keys

• Initially, each user gets all keys in its path to K
– When u1 leaves, GCKS computes new k12’, k14’,K’
– U2 gets k2[k12’], k12’[k14’], k14’[K’]
– U3 gets k34[K14’], k14’[K’]

• GDOI does not specify key hierarchies but is
compatible with them

KEY HIERARCHIES FOR ACCESS
CONTROL

K
K58

K78

K8

K14

K58K34K12

K1 K2 K3 K4 K5 K6 K7

U1 U2 U3 U4 U5 U6 U7 U8

THE NRL PROTOCOL
ANALYZER

• Formal methods tool for verifying security properties
of crypto protocols and finding attacks

• User specifies protocol in terms of communicating
state machines communicating by use of a medium
controlled by a hostile intruder

• User verifies protocol by
1. Proving a set of lemmas to limit size of search

space
2. Specifying an insecure state
3. Using NPA to search backwards from that state to

see if attack can be found

NRL Protocol Analyzer Model

• Honest Principals modeled as communicating state
machines

• Dolev-Yao Adversary
• Dishonest principals part of the adversary
• Each run of a protocol local to a principal assigned a unique

round number
– Allows distinguishing of different runs local to a

principal

3

NPA Events
• Each state transition in an NPA spec may be assigned an event,

denoted by
event(P, Q, T, L, N)

– P: principal doing the transition
– Q: set of other parties involved in transition
– T: name of the transition rule
– L: set of words relevant to transition
– N: local round number

• Events are the building blocks of the NPATRL Language

NPATRL
• NRL-Protocol-Analyzer-Temporal-Requirements-

Language
– Pronounced 'N Patrol'

• Requirements characterized in terms of event statements
• learn events indicate acquisition of information by

adversary
• Syntax closely corresponds to NPA language, e.g.,

receive(A, B, [message], N)
• Add usual logical connectives, e.g., ¬¬¬¬, ∧∧∧∧, =>=>=>=>
• One temporal operator meaning "happens before"

Example NPATRL Requirement

• If an honest A accepts a key Key for communicating with an honest B,
then a server must have generated and sent the key for an honest A
and an honest B to use.

accept(user(A, honest), user(B, X), [Key], N?) =>
send(server, (user(A, honest), user(B,honest), [Key], N?)

THREE TYPES OF
REQUIREMENTS

• Secrecy requirements
– Intruder should not learn secrets, except under

certain failure conditions
• Authentication requirements

– If A accepts a message as coming from B intended
for purpose X, then B should have sent that
message to A and intended it for purpose X

• Freshness requirements
– Conditions on recency and/or uniqueness of

accepted messages
• Some models bundle freshness and authentication

together

Analysis Using NPA/NPATRL

• Map event statements to events in an NRL Protocol Analyzer
specification

– Interpret atomic formulae
• Take negation of each NPATRL requirement

– Defines a state that should be unreachable iff
requirement is satisfied

• Use NPA to prove goal is unreachable, or
Use NPA to reach goal, i.e., find attack

Existing NPATRL Requirements
Suites

• Requirements have been given for
– Two party key distribution protocols
– Two party key agreement protocols
– Credit card payment transactions

• SET (Secure Electronic Transactions)

4

NPA SPEC OF GDOI
• Protocol starts with GCKS creating a group and a

group key
• At any time after that, a group member may request

to join the group by initiating a Groupkey Pull
Exchange
– GCKS responds by completing protocol

• At any time after that any of the below may occur
– GCKS may expel member and refuse to send it new

keys
– Group member may initiate new Phase 2 exchange
– GCKS may send keys to group member using

Groupkey Push Datagram
• Initial spec took a little under a week to write

STRUCTURE OF
SPECIFICATION

Chooses group

Requests key Gets push
message

Creates group

Creates SA2
for kek

Creates SA3
for tek

Sends push
message

Responds to
key request

HOW SPECIFICATION LIMITED
• NPA can’t currently handle unbounded data

structures such as key hierarchies
– Can specify them, but they will send NPA into

infinite loop
– Currently investigating appropriate abstractions

• So --
– For the moment did not try to specify key

hierarchies, assumed each KEK is a single key
– Assumed that in Phase 2 Exchange, one SAK sent
– Assumed three possibilities for Groupkey Push

Datagram
• One SAK or one SAT

• Also, did not include spec of IKE Phase 1

Challenges In Developing
Requirements for Group Protocols
• In pairwise protocols, have notion of a session

– Secrecy means keys not learned by parties not
involved in the session

– Freshness means key is unique to a session
• In group protocol session much more open ended

– Many keys may be distributed in one session
– Principals may join and leave the group during a

session
• How should their access to keys be limited?
• How do different secrecy requirements interact with each

other?

A MAZE OF REQUIREMENTS

SECRECY

AUTHENTICATION

FRESHNESS

PERFECT FORWARD SECRECY

ACCESS CONTROL

FRESHNESS ISSUES
• Like secrecy, freshness is more complicated for

group protocols
– Can no longer tie key to session

• For GDOI, identified two types of freshness
– Recency Freshness

• KEK generated most recently (or after a specific time) is
the current one

– Sequential Freshness
• Principal should never accept KEK that is less recent

than the one it has

• For Groupkey push datagram, can only ensure that
key principal accepts is most recent known to it, not
that it is current

5

RECENCY FRESHNESS FOR
PULL PROTOCOL

member_acceptpullkey(N,GCKS,(G,K,PK),N) =>
stealpairwisekey(env,(),(GCKS,M,PK),N?) or

not((member_requestkey(M,(GCKS,Nonce,PK),N) and
gcks_expire(GCKS,(),(G,K),N?)))

if member accepts key K via a pull protocol, then either
1. his pairwise key was stolen, or
2. K should not have expired previously to the request

can’t require that key be current at time of receipt, could have
expired en route

SEQUENTIAL FRESHNESS
FOR PULL PROTOCOL

Member_acceptpullkey(M,GCKS,(G,K,PK),N?) =>
stealpairwisekey(env,(),(GCKS,M,PK),N?) or
not(member_acceptkey(M,GCKS,(G,K1),N?) &

(gcks_makecurrent(GCKS,(),(G,K1),N?)
&

gcks_makecurrent(GCKS,(),(G,K),N?)))

If member accepts a key K, then either
1. his pairwise key was stolen, or
2. he should not have previously accepted a key that became

current later than K

SECRECY REQUIREMENTS
FOR GDOI

• Forward access control
– Principals should not learn keys distributed after

they leave the group
• Backward access control

– Principals should not learn keys that expired
before they joined the group

• Perfect forward secrecy
– If pairwise key stolen, only keys distributed with

that key after the event should be compromised
• Other requirements may govern effects of stealing

key encryption keys, etc.
• How do these interact with each other?

SOLUTION: DEVELOP
CALCULUS OF SECRECY

REQUIREMENTS
• Build collection of NPATRL statements of events that

can lead to key compromise
– Currently restricted to requirements for keks
– Five non-recursive base cases describing

• Stealing of pairwise and group keys
• Group keys sent to dishonest members

– Two recursively defined cases addressing
generalizations of forward and backward access
control

• Mix and match statements to get requirement of your
choice

AN UNEXPECTED
DEVELOPMENT

• All requirements could easily be expressed in terms
of fault trees
– Described sequences of events that should or

should not lead up to event such as accepting a
key, learning a key,etc.

– Can reason about sequences that
• Should both happen (AND)
• One of which should happened (OR)
• Should not happen (NOT)

or

intruder
learns key K
for group G

K distributed
to dishonest member

by GCKS for G

Intruder
learns key K’
for group G

K distributed
to G by GCKS

K’ distributed
to G by GCKS

and

GCKS uses PK
to send key K

to M

Pairwise key PK
between GCKS

and M stolen

and

Intruder steals
K

Fig. 4 Forward Access Control Without PFS or
Backward Access Control

K distributed
to G by GCKS

Dishonest member
Q joins group G

with index I

Dishonest member
Q leaves group G

with index I

not

and

6

SOME RESULTS OF
SPECIFYING PROTOCOL

• Identified several omissions and ambiguities
• Found one major inconsistency

– Sequence numbers were originally send in KD
payload

– Sequence numbers updated every time new KEK
created

– Didn’t account for fact that some push messages
may not contain KEK’s

• Now sequence numbers updated every time new
push message sent

SOME RESULTS OF
SPECIFYING REQUIREMENTS

• Improvement to Proof-of-possession option
– In old version, principals only signed own nonces
– Didn’t work if pairwise keys compromised
– Now, principals sign hash of both nonces

• Found detail that needed to be added to Groupkey
Pull protocol
– Did not satisfy sequential freshness unless require

that member checks that SEQ number received in
last message was greater than SEQ number it may
currently hold

RESULTS OF ANALYSIS

• Two similar oracle attacks making use of type confusion
• One found using NPA
• Another (simpler) one found after NPA found first attack

– Suggested by NPA result
• Will present simpler attack here
• Suppose dishonest group member wants to trick other group

members into accepting a fake key as a genuine one
• Suppose that protocol uses Proof-of-Possession option
• Then …

SIG

Ni

POP_I

POP_R

GROUP

Dishonest Member
GCKS

HDR*,HASH(1),HDR’,SEQ’,SA’,ID

HDR*,HASH(2),Nr,SA

HDR*,HASH(3),
SIG KM(HDR’,SEQ’,SA’,NR)

HDR*,HASH(4),SEQ,KD,
SIGGCKS(HDR’,SEQ’,SA’,Nr)

HDR*,SEQ’,SA’,Nr,
SIGGCKS(HDR’,SEQ’,SA’,NR)

G
R
O
U
P
K
E
Y
P
U
L
L

G
R
O
U
P
K
E
Y
P
U
S
H

FIX TO PROTOCOL

• First, did quick analysis to see if attack was really
possible
– What kind of assumptions about lengths of data

did it require?
• Whenever signature taken, prepend to signed data a

tag saying what kind of signature it is
– GCKS pop
– Member pop
– Groupkey push

RESULTS

• Identified potential GDOI problems early on, resulting in a better
protocol

• Formal analysis credited with speeding up acceptance of GDOI
and of the new MSeC (multicast security) working group formed
out of SMuG

• Starting to see interest from other parts of IETF in performing or
applying formal analyses

• Some avenues for further research
– Fault tree representation of requirements
– Algorithms for detecting type confusion/oracle attacks

7

A CODA

Most Important Need

• NRL Protocol Analyzer, and other formal crypto
protocol analysis tools, don’t support incremental
analysis well
– Even minor changes may require complete

reverification
– As a result did complete formal analysis of system

at only one stage
• What’s needed is a verification method that

– Is consistent with methods used by protocol
designers

– Supports incremental verification

LOGIC FORCRYPTO
PROTOCOL ANALYSIS

• Work with Dusko Pavlovic, John Mitchell, Anupam Datta, Ante Derek
• Basic idea:

– Axioms for deriving conclusions about protocol traces from
messages received by principals

• E.g: If A sends a challenge, to B, and gets an authenticated response
from B, then A knows that B responded after A’s challenge

– Logic provides means for composing proofs
• Applying it to GDOI with Dusko Pavlovic

– Evaluating logic as we apply it
– Using feedback from GDOI analysis to extend and improve it
– Also doing this for Kerberos

GDOI AND POP AGAIN

• Recall that certificates *may* be used to disbribute public key
certificates in GDOI

• Proof of possession uses challenge-response to prove that you
actually know the private key
– Same nonces used for PoP as for challenge-response in

core GDOI
• Language in current version of GDOI seems to indicates that

certificates can be used to distribute new identities as well
There are two alternative means for authorizing the GROUPKEY-PULL message. First, the Phase 1

identity can be used to authorize the Phase 2 (GROUPKEY-PULL) request for a group key.
Second, a new identity can be passed in the GROUPKEY-PULL request. The new identity could
be specific to the group and use a certificate that is signed by the group owner to identify the
holder as an authorized group member. The Proof-of-Possession payload validates that the holder
possesses the secret key associated with the Phase 2 identity.

• What can you prove from PoP in that case?

ATTEMPTED TO DERIVE
PROOF

• Able to link request for key to Phase 1 identities
– Showed that request for key came from possessor

of phase 1 identity
• Able to link POP to identity in certificate

– Showed that POP showed that principal named in
certificate is in possession of key

• What we couldn’t show:
– That there is any link between phase 1 identity and

principal in certificate!
– Because there isn’t any!

AN ATTACK
Suppose that I is a GCKS that wants join a group managed by another GCKS, B.
Suppose that I doesn’t have the proper credentials to join B’s group.
Then I can trick a member A who does into supplying them, as follows.

1. A --> I : HDR*, HASH(1), Ni, ID A requests to join I's group, sending a nonce Ni

1.' I_member --> B : HDR*, HASH(1)', Ni, ID’ I requests to join B's group, forwarding A's nonce Ni

2.' B --> I_member : HDR*, HASH(2), Nr', SA’ B responds to I with its nonce Nr'

2. I --> A : HDR*, HASH(2)', Nr', SA I responds to member A, but using B's nonce Nr'

3. A --> I: HDR*, HASH(3), CERT(for A's ID in group), POP = S_A(hash(Ni,Nr'))
A responds to I with a POP taken over A's and B's nonce

3.' I_member --> B: HDR*, HASH(3), CERT(for A's ID in group), POP = S_A(hash(Ni,Nr))
I as a member responds to B, using A's CERT and POP

4. B --> I_member : HDR*, HASH(4), KD
B sends keying information to I under impression the identity in A's certificate
belongs to I

8

CONCLUSION:
A VERIFIER’S WORK IS NEVER

DONE

