
1

Contract-Signing Protocols

J. Mitchell
V. Shmatikov

CS 259
Next few lectures

�Today
• Contract-signing protocols

�Thursday
• More about contract signing, probability

�Next Tues
• Probabilistic model checking

�Next Thurs
• Homework due; think about projects

After this week, cover tools and protocol examples together

Contract Signing

�Two parties want to sign a contract
• Multi-party signing is more complicated

�The contract is known to both parties
• The protocols we will look at are not for

contract negotiation (e.g., auctions)
�The attacker could be

• Another party on the network
• The “person” you think you want to sign a

contract with

Example

�Both parties want to sign the contract
�Neither wants to commit first

Immunity
deal

Another example: stock trading

Willing to sell stock at price X

Ok, willing to buy at price X

stock broker customer

�Why signed contract?
• Suppose market price changes
• Buyer or seller may want proof of agreement

Network is Asynchronous

�Physical solution
• Two parties sit at table
• Write their signatures simultaneously
• Exchange copies

�Problem
• How to sign a contract on a network?

Fair exchange: general problem of exchanging
information so both succeed or both fail

2

Fundamental limitation

�Impossibility of consensus
• Very weak consensus is not solvable if one or more

processes can be faulty
�Asynchronous setting

• Process has initial 0 or 1, and eventually decides 0 or 1
• Weak termination: some correct process decides
• Agreement: no two processes decide on different values
• Very weak validity: there is a run in which the decision is

0 and a run in which the decision is 1
�Reference

• M. J. Fischer, N. A. Lynch and M. S. Paterson,
Impossibility of Distributed Consensus with One Faulty
Process. J ACM 32(2):374-382 (April 1985).

FLP Partial Intuition

�Quote from paper:
• The asynchronous commit protocols in current

use all seem to have a “window of vulnerability”-
an interval of time during the execution of the
algorithm in which the delay or inaccessibility of
a single process can cause the entire algorithm
to wait indefinitely. It follows from our
impossibility result that every commit protocol
has such a “window,” confirming a widely
believed tenet in the folklore.

Implication for fair exchange

�Need a trusted third party (TTP)
• It is impossible to solve strong fair exchange

without a trusted third party. The proof is by
relating strong fair exchange to the problem of
consensus and adapting the impossibility result
of Fischer, Lynch and Paterson.

�Reference
• H. Pagnia and F. C. Gärtner, On the impossibility

of fair exchange without a trusted third party.
Technical Report TUD-BS-1999-02, Darmstadt
University of Technology, March 1999

Two forms of contract signing

�Gradual-release protocols
• Alice and Bob sign contract
• Exchange signatures a few bits at a time
• Issues

– Signatures are verifiable
– Work required to guess remaining signature decreases
– Alice, Bob must be able to verify that what they have

received so far is part of a valid signature

�Add trusted third party

Easy TTP contract signing

A BTTP

signature signature

contractcontract

�Problem
• TTP is bottleneck
• Can we do better?

Optimistic contract signing

�Use TTP only if needed
• Can complete contract signing without TTP
• TTP will make decisions if asked

�Goals
• Fair: no one can cheat the other
• Timely: no one has to wait indefinitely

(assuming that TTP is available)
• Other properties …

3

General protocol outline

�Trusted third party can force contract
• Third party can declare contract binding if

presented with first two messages.

A B

I am going to sign the contract

I am going to sign the contract

Here is my signature

Here is my signature

Commitment (idea from crypto)

�Cryptographic hash function
• Easy to compute function f
• Given f(x), hard to find y with f(y)=f(x)
• Hard to find pairs x, y with f(y)=f(x)

�Commit
• Send f(x) for randomly chosen x

�Complete
• Reveal x

Refined protocol outline

�Trusted third party can force contract
• Third party can declare contract binding by

signing first two messages.

A B

sign(A, 〈contract, hash(rand_A)〉)

sign(B, 〈contract, hash(rand_B)〉)

rand_A

rand_B

Optimistic Protocol [Asokan, Shoup, Waidner]

M K

Input:
PKK, T, text

Input:
PKM, T, text

m1 = sigM (PKM, PKK, T, text, hash(RM))

m2 = sigK (m1, hash(RK))

m3 = RM

m4 = RK

m1, RM, m2, RK

�Contract from normal execution

�Contract issued by third party

�Abort token issued by third party

Asokan-Shoup-Waidner Outcomes

m1, RM, m2, RK

sigT (m1, m2)

sigT (abort, a1)

Role of Trusted Third Party

�T can issue a replacement contract
• Proof that both parties are committed

�T can issue an abort token
• Proof that T will not issue contract

�T acts only when requested
• decides whether to abort or resolve on

the first-come-first-serve basis
• only gets involved if requested by M or K

4

Resolve Subprotocol

T

KNetM Net

r1 = m1, m2r2

aborted?
Yes: r2 = sigT (abort, a1)
No: resolved := true

r2 = sigT (m1, m2)

r2

m1 = sigM (… hash(RM))

m3 = ??? m4 = ???

m2 = sigK (… hash(RK))

sigT (m1, m2)

sigT (abort, a1)

OR

Abort Subprotocol

M m2 = ??? KNetwork

T

a1 = sigM (abort, m1)

a2

resolved?
Yes: a2 = sigT (m1, m2)
No: aborted := true

a2 = sigT (abort, a1)

m1 = sigM (… hash(RM))

sigT (m1, m2)

sigT (abort, a1)

OR

Fairness and Timeliness

If A cannot obtain B’s signature, then
B should not be able to obtain A’s signature

and vice versa

Fairness

“One player cannot force the other to wait --
a fair and timely termination can always be

forced by contacting TTP”

Timeliness

[Asokan, Shoup, Waidner Eurocrypt ‘98]

BA

m1= sign(A, 〈c, hash(r_A)〉)

sign(B, 〈m1, hash(r_B)〉)
r_A
r_B

Agree

A B
Network

T

Abort

???

Resolve Attack?

BA Net

T sigT (m1, m2)

m1

???

m2 A

T

Asokan-Shoup-Waidner protocol

If not already
resolved

a1

sigT (a1,abort)

Attack

M

r2 = sigT (m1, m2)

m1 = sigM (... hash(RM))

m2 = sigK (m1, hash(RK))

m3 = RM

T

r1 = m1, m2

secret QK, m2

sigT (m1, m2) m1, RM, m2, QK

contracts are
inconsistent!

Later ...

sigM (PKM, PKK, T, text, hash(RM))

K

Replay Attack

Intruder causes K
to commit to old
contract with M

sigK (m1, hash(QK))

RM

QK

M K
RM

sigM (… hash(RM))

RK

sigK (... hash(RK))

5

Fixing the Protocol

M K

Input:
PKK, T, text

Input:
PKM, T, text

m1 = sigM (PKM, PKK, T, text, hash(RM))

m2 = sigK (m1, hash(RK))

m3 = RM

m4 = RK

m1, RM, m2, RK

sigM (, hash(RK))

Desirable properties

�Fair
• If one can get contract, so can other

�Accountability
• If someone cheats, message trace shows

who cheated
�Abuse free

• No party can show that they can
determine outcome of the protocol

Abuse-Free Contract Signing

A B

PCSA(text,B,T)

PCSB(text,A,T)

sigA(text)

sigB(text)

[Garay, Jakobsson, MacKenzie]

Preventing “abuse”

�Private Contract Signature
• Special cryptographic primitive
• B cannot take msg from A and show to C
• T converts signatures, does not use own

[Garay, Jakobsson, MacKenzie]

Role of Trusted Third Party

�T can convert PCS to regular signature
• Resolve the protocol if necessary

�T can issue an abort token
• Promise not to resolve protocol in future

�T acts only when requested
• decides whether to abort or resolve on a

first-come-first-served basis
• only gets involved if requested by A or B

Resolve Subprotocol

BA Net

T

r1 = PCSA(text,B,T), sigB(text)

aborted?
Yes: r2 = sigT(a1)
No: resolved := true

r2 = sigA(text)
store sigB(text)

r2

PCSA(text,B,T)

???

PCSB(text,A,T)

sigT(a1)

sigA(text)

OR

6

Abort Subprotocol

A ??? BNetwork

T

a1=sigA(m1,abort)

a2

resolved?
Yes: a2 = sigB(text)
No: aborted := true

a2 = sigT(a1)

m1 = PCSA(text,B,T)

sigB(text)

sigT(a1)

OR

BA

PCSA(text,B,T)

PCSB(text,A,T)
sigA(text)
sigB(text)

Agree

A B
Network

T

m1 = PCSA(text,B,T)

Abort

???

Resolve Attack

BA Net

T PCSA(text,B,T)
sigB(text)

PCSA(text,B,T)

???

PCSB(text,A,T) B

T

sigT(abort)

abort AND
sigB(text) abort

Leaked by T

Garay, Jakobsson, MacKenzie

Attack

B
PCSA(text,B,T),

sigB(text)
sigT(abort)

PCSA(text,B,T)

PCSB(text,A,T)

T

sigA(abort)

sigT(abort)
Leaked by T

abort AND sigB(text) only abort

Repairing the Protocol

B
PCSA(text,B,T),
PCSB(text,A,T)

PCSA(text,B,T)

PCSB(text,A,T)

T

If T converts PCS into a
conventional signature,
T can be held accountable

Balance

No party should be able to unilaterally
determine the outcome of the protocol

Stock sale example: there is a point in the protocol where
the broker can unilaterally choose
whether the sale happens or not

Balance may be violated even if basic fairness is satisfied!

Can a timely, optimistic protocol be fair AND balanced?

Advantage

Willing to sell stock at price X

Ok, willing to buy at price X

stock broker customer

Must be able to ask TTP to cancel this
instance of protocol, or will be stuck
indefinitely if customer does not respond

Can go ahead and complete the sale, OR
can still ask TTP to cancel

(TTP doesn’t know customer has responded)

Optimistically waits for broker to respond …

Chooses whether deal will happen:
does not have to commit stock for sale,
can cancel if sale looks unprofitable

Cannot back out of the deal:
must commit money for stock

7

“Abuse free”: as good as it gets

�Specifically:
• One signer always has an advantage over

the other, no matter what the protocol is

• Best case: signer with advantage cannot
prove it has the advantage to an outside
observer

Theorem

�In any fair, optimistic, timely
contract-signing protocol, if one
player is optimistic*, the other player
has an advantage.

* optimistic player: waits a little before
going to the third party

Abuse-Freeness

No party should be able to unilaterally
determine the outcome of the protocol

Balance

No party should be able to prove that
it can unilaterally determine
the outcome of the protocol

Abuse-Freeness

[Garay, Jakobsson, MacKenzie Crypto ‘99]

impossible �

How to prove something like this?

�Define “protocol”
• Program for Alice, Bob, TTP
• Each move depends on

– Local State (what’s happened so far)
– Message from network
– Timeout

�Consider possible optimistic runs
�Show someone gets advantage

Key idea (omitting many subtleties)

�Define “power” of a signer (A or B)
in a state s

if A can get contract by reading
a message already in network,
doing internal computation

if A can get contract by
communicating with TTT,
assuming B does nothing

otherwise

PowerA(s) =

2

1

0

�Look at optimistic transition s → s’
where PowerB(s) =1 > PowerB(s) = 0.

Advantage (intuition for main argument)

�If PowerB(s) = 0 → PowerB(s’) =1 then
• This is result of some move by A

– PowerB(s) = 0 means B cannot get contract
without B’s help

• The move by A is not a message to TTP
– The proof is for an optimistic protocol, so we

are thinking about a run without msg to T
• B could abort in state s

– We assume protocol is timely and fair: B must
be able to do something, cannot get contract

• B can still abort in s’, so B has advantage!

8

Conclusions

�Online contract signing is subtle
• Fair
• Abuse-free
• Accountability

�Several interdependent subprotocols
• Many cases and interleavings

�Finite-state tools great for case analysis!
• Find bugs in protocols proved correct

�Proving properties of all protocols is harder
• Understand what is possible and what is not

