

Recall: protocol state space

- ◆Participant + attacker actions define a state transition graph
- ◆A path in the graph is a trace of the protocol
- ◆Graph can be
 - Finite if we limit number of agents, size of message, etc.
 - Infinite otherwise

[Paulson]

Analysis using theorem proving

- ◆Correctness instead of bugs
 - Use higher-order logic to reason about possible protocol executions
- ♦ No finite bounds
 - Any number of interleaved runs
 - Algebraic theory of messages
 - No restrictions on attacker
- ◆Mechanized proofs
 - Automated tools can fill in parts of proofs
 - Proof checking can prevent errors in reasoning

Inductive proofs

◆Define set of traces

- Given protocol, a trace is one possible sequence of events, including attacks
- ◆Prove correctness by induction
 - For every state in every trace, no security condition fails
 - Works for safety properties only
 - Proof by induction on the length of trace

Two forms of induction

- ♦ Usual form for $\forall n \in Nat. P(n)$
 - Base case: P(0)
 - Induction step: $P(x) \Rightarrow P(x+1)$
 - Conclusion: ∀n∈ Nat. P(n)
- ◆Minimial counterexample form
 - Assume: $\exists x [\neg P(x) \land \forall y < x. P(y)]$
 - Prove: contraction
 - Conclusion: ∀n∈ Nat. P(n)

Both equivalent to "the natural numbers are well-ordered

Agents and Messages

```
agent A,B,... =
                    Server | Friend i | Spy
msg X_i Y_i ...
                    Agent A
                    Nonce N
                    Key K
                    \{X, Y\}
                    Crypt XK
               Typed, free term algebra, ...
```

Protocol semantics

- ◆Traces of events:
 - A sends X to B
- ◆Operational model of agents
- ◆Algebraic theory of messages (derived)
- ◆A general attacker
- ◆Proofs mechanized using I sabelle/HOL

Define sets inductively

- ◆Traces
 - Set of sequences of events
 - Inductive definition involves implications
- ◆Information from a set of messages
 - parts H: parts of messages in H
 - analz H: information derivable from H
 - synth H : msgs constructible from H

Protocol events in trace

- ◆Several forms of events
 - A sends B message X
 - A receives X
 - A stores X

 $A \rightarrow B \{ N_B \}_{pk(B)}$

If ev is a trace and Na is unused, add $A \rightarrow B \{A, N_A\}_{pk(B)}$ Says A B Crypt(pk B){A,Na} $B \rightarrow A \{ \overline{N_B}, \overline{N_A} \}_{pk(A)}$

If Says A' B Crypt(pk B) $\{A,X\} \in ev$ and Nb is unused, add
Says B A Crypt(pk A){Nb,X}

If Says $...\{X,Na\}...\in ev$, add Says A B Crypt(pk B) $\{X\}$

Dolev-Yao Attacker Model

- ◆Attacker is a nondeterministic process
- ◆Attacker can
 - Intercept any message, decompose into parts
 - Decrypt if it knows the correct key
- ◆Attacker cannot
 - Gain partial knowledge
 - Perform statistical tests
 - Stage timing attacks, ...

Attacker Capabilities: Analysis

analz H is what attacker can learn from H

 $X \in H$ $X \in \text{analz } H$ $\{X,Y\} \in \text{analz } H$ $\Rightarrow X \in \text{analz } H$ $\{X,Y\} \in \text{analz } H$ \Rightarrow $Y \in \text{analz } H$

Crypt $XK \in \text{analz } H$

 $K^{-1} \in \text{analz } H \Rightarrow X \in \text{analz } H$

Attacker Capabilities: Synthesis synth H is what attacker can create from Hinfinite set! $X \in H$ $\Rightarrow X \in \text{synth } H$ $X \in \text{synth } H \& Y \in \text{synth } H$ $X \in \text{synth } H \& K \in \text{synth } H$ $X \in \text{synth } H \& K \in \text{synth } H$ $X \in \text{synth } H \& K \in \text{synth } H$

Equations and implications analz(analz H) = analz Hsynth(synth H) = synth Hanalz(synth H) = analz $H \cup$ synth Hsynth(analz H) = ???? Nonce $N \in$ synth $H \Rightarrow$ Nonce $N \in H$ Crypt $K \times K \in$ synth $H \Rightarrow$ Crypt $K \times K \in H$ or $X \in$ synth $K \in H$

Attacker and correctness conditions If $X \in \text{synth}(\text{analz}(\text{spies } evs))$, add Says Spy B XX is not secret because attacker can construct it from the parts it learned from eventsIf $Says B A \{N_b, X\}_{pk(A)} \in evs \&$ $Says A' B \{N_b\}_{pk(B)} \in evs$, Then $Says A B \{N_b\}_{pk(B)} \in evs$ If B thinks he's talking to A, then A must think she's talking to B

Secure Electronic Transactions (SET) ◆ Cardholders and Merchants register ◆ They receive electronic credentials • Proof of identity • Evidence of trustworthiness ◆ Payment goes via the parties' banks • Merchants don't need card details • Bank does not see what you buy Isabelle verification by Larry Paulson, Giampaolo Bella, and Fabio Massacci

Verifying the SET Protocols

- ♦Several sub-protocols
- ◆Complex cryptographic primitives
- ◆Many types of principals
 - Cardholder, Merchant, Payment Gateway, CAs
- ◆Dual signatures: partial sharing of secrets
- ♦1000 pages of specification and description
- ◆The upper limit of realistic verification

SET terminology

- ◆I ssuer
 - cardholder's bank
- ◆Acquirer
 - merchant's bank
- ◆Payment gateway
 - pays the merchant
- ◆Certificate authority (CA)
 - issues electronic credentials
- ◆Trust hierarchy
 - top CAs certify others

SET Documentation ◆ Business Description • General overview • 72 pages ◆ Programmer's Guide • Message formats & English description of actions • 619 pages ◆ Formal Protocol Definition • Message formats & the equivalent ASN.1 definitions • 254 pages Total: 945 pages

Cardholder Registration

- ◆Two parties
 - Cardholder C
 - Certificate authority CA
- ◆C delivers credit card number
- ◆C completes *registration form*
 - Inserts security details
 - Discloses his public signature key
- **♦** Outcomes
 - C's bank can vet the registration
 - CA associates C's signing key with card details

CARCADO, CER PERCOPTEM NO. CA

Message 5 in I sabelle

Secrecy of Session Keys

- ◆Three keys, created for digital envelopes
 - Dependency: one key protects another
 - Main theorem on this dependency relation
 - Generalizes an approach used for simpler protocols (Yahalom)
- ◆Similarly, prove secrecy of Nonces

Use SET Dual Signature

- ♦3-way agreement with partial knowledge
 - Cardholder shares Order Information (OI) only with Merchant
 - Cardholder shares Payment Information (PI) only with Payment Gateway
- ◆Cardholder signs hashes of OI, PI
- ◆Non-repudiation
 - All parties sign messages

Messages

Complications in SET proofs

- ◆Massive redundancy
 - Caused by hashing and dual signature
 - message!
- ♦ Multi-page subgoals
- ◆I nsufficient redundancy (no explicitness), failure of one agreement property
- ◆Many digital envelopes

Inductive Method: Pros & Cons

- Advantages
 - Reason about infinite runs, message spaces
 - Trace model close to protocol specification
 - Can "prove" protocol correct
- ◆Disadvantages
 - Does not always give an answer

 - Still trace-based properties only
 - Labor intensive
 - Must be comfortable with higher-order logic

Caveat

- Quote from Paulson (J Computer Security, 2000)
- The Inductive Approach to Verifying Cryptographic Protocols

 The attack on the recursive protocol [40] is a sobering reminder of the limitations of formal methods.. Making the model more detailed makes reasoning harder and, eventually, infeasible. A compositional approach seems necessary
- - [40] P.Y.A. Ryan and S.A. Schneider, An attack on a recursive authentication protocol: A cautionary tale. Information Processing Letters 65, 1 (January 1998) pp

