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Abstract: This write up contains the details of the analysis of a secure routing protocol,
using Mur¢, a state machine checker. The analysis strategy uses an equivalence notion of
security. It considers the comparison of the secure protocol in the presence of attackers with its
un-secured counterpart, in the absence of attackers.

There are a few novel ways that Mur¢ has been used in this analysis, including modifying
the Mur¢ source to have it output all the deadlocked states.

We conclude by presenting our views on the protocol that we analyzed and a few
suggestions features that a tool to analyze such protocols must contain.

Introduction: SuperSEAD is a secure routing protocol, intended for use in mobile ad-
hoc networks. It uses hash chains and hash tree chains in various ways to achieve correct routing

state in the presence of multiple uncoordinated attackers. The version that we analyzed is
described in [1].

We picked this protocol to analyze, as it seemed to be sufficiently different from the kinds of
protocols described in class, to offer us some fundamental challenges.

We picked Mur¢ to analyze the protocol as we were studying the effect of attackers advertising
wrong routing state, and the Mur¢ notion of states, transitions and invariants sufficed for out

analysis.

To see what we did, see the section on Analysis Process.

Ad Hoc Network Characteristics:

These networks are characterized by need for low power consumption and low levels of physical
security and broadcast physical medium.

Asymmetric techniques like RSA are not to be used as are inefficient and consume too
much power.

Theory:

The SuperSEAD protocol consists of a few, repeating security patterns, this section contains a
brief description of these security patterns.

Hash chains:
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Hash Chains are used to provide authentication in situations that demand non-resource intensive
alternatives to the heavy, asymmetric or symmetric crypto based methods.

An arbitrary starting value is picked and each element in the chain is a hash of the previous
element. In the diagram above, vis is the arbitrarily picked initial value. The remaining values are
generated using a ‘well known’ hash function.

The anchor of the hash chain, v, is distributed to the entities that intend to authenticate the
sender.

The sender sends out hash values starting v; onwards in successive packets that it sends out.
Receivers can authenticate these packets by hashing the received value an appropriate number of
times and checking whether the result is the same as a previously authenticated value (or the
anchor).

The basis for security relies on the fact that an attacker cannot forge an element in that is earlier
in the generation order based on a known value in the hah chain. This property is realized by the
collision free nature of hash functions.

Hash Trees:

These are generalizations of hash chains. Hash trees allow the anchor( the root of the tree) to
authenticate the separately, any leaf of the tree.

Generation starts from the leaf nodes, which are hashed once to blind the values.

Each pair of sibling nodes are concatenated and hashed to form a parent. This process is
continued upwards to the root.

The anchor (the root) is distributed initially to all receivers that intend to authenticate the packets.
A sender sends a specific leaf node along with a path up the tree that allows the receiver to
authenticate the sender. For example a sender could send vy, vs’, mg7, my; and the receiver could
the repeat the generation procedure and check it against the anchor.

Hash Tree Chains:
These are compositions of hash chains and hash trees.

Here each node in the hash tree chain is a hash tree. Successive hash trees are generated
by concatenating the root with 1,2,...k and hashing each concatenation. Where k is the number of
leaf nodes in the tree.



The generation and authentication procedures are similar to hash chains.

Generation

Usage

Packet Leashes: These are used to avoid replay attacks. The leashes come in two flavors,
geographical leashes and temporal leashes.

Leashes disallow attacks that make the receiver believe that a sender is within one hop when it is
not.

Temporal Leashes work as follows: The sender sends a timestamp signifying the
time of dispatch of the packet. An authentication scheme is used to allow the receiver to verify
the authenticity of the timestamp. The receiver can check that the packet was generated not too
far back in the past, and thus verify that there was no replay attack.

Temporal Leashes require that the clocks of the sender and the receiver are tightly synchronized.

Geographical Leashes: Geographical Leashes are similar to temporal leashes with the
additions that the sender also publishes his location information.

The Receiver can verify the fact that the sender is within range, by comparing the senders
location with its own location, to ensure that the transmission was made within the locality of the
receiver.

Geographical Leashes require that each node knows it own location.

Tesla: This is a broadcast authentication protocol that is based on hash chains and time
synchronization.

The Basic Idea is as follows: All the nodes have loosely synchronized clocks. Each node
generates a hash chain for itself and distributes the anchor to all the nodes that intend to
authenticate its broadcasts.

Time is divided into intervals, and hash chain nodes are associated with each interval in reverse
generation order.

The Sender then includes the corresponding hash chain value with all broadcasts made during that
interval, and then reveals these values according to a previously established schedule. Receivers
Buffer packets till they receive the hash chain values that allow them to authenticate the packets.

Security arises from the fact that the hash value that is used to authenticate all broadcasts during
the interval is not published till a later interval.

This results in an authentication scheme that relies on the relatively resource non-intensive hash
chains.



Assumptions that SuperSEAD makes:

1. Attacks that rely on hiding certain routes are not guarded against, as this situation is
equivalent to not forwarding data packets.

2. Nodes cannot selectively jam packets as these attacks originate at the physical layer and

require mechanisms in the physical layer to avoid them.

Attacker nodes cannot collude to attack the network.

Nodes can replay, modify routing information

5. When a node is compromised all the key material that is at the node is available to the
attacker.
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Protocol Description:

SEAD is based on a periodic distance vector routing protocol DSDV, with some modifications.

The routing protocol is as follows:

Each node sends out a periodic update about itself with an even sequence number. It includes in
each update, information about every other node: distance, next hop, and the sequence number of
the last update that it received about the node.

A node that receives a routing update from a neighbor updates an entry in the routing table about
another node if the update has a higher sequence number or the same sequence number and a
smaller metric value.

When a the neighbor of a node moves, the node detects this (through physical layer mechanisms)
and marks the corresponding routing table entry with the next odd sequence number. It thus
avoids the count to infinity problem by ignoring updates, till the node which move publishes its
next even sequence numbered update.

“SEAD is robust against multiple uncoordinated attackers creating incorrect routing state in any
other node, even in spite of any active attackers or compromised nodes in the network.”

It achieves this security using the following ideas:

1. Hash chains and Hash tree chains to authenticate higher sequence numbers and a lower
bound on the metric value.

This is implemented as follows: Each node generates a chain of length m*k, where m is the
number of nodes in the network (and a bound on the maximum distance between any two nodes
on the network.), and k is the maximum sequence number.

The anchor of this chain is distributed to all the nodes that intend to authenticate this node.

A node would include a fresh sequence number and a zero metric value about itself in the update
that it sends to its neighbors.



Each good node, would check the update that it receives and see if it has a higher sequence
number or a similar sequence number and a lower metric. In which case it would use the
advertising node as the next hop and make necessary modifications to the routing table entry.

A good node advertises to its neighbors a distance of one hop more than what it has in its routing
table to any destination.

A tuple (dist,seqno) for a particular destination is represented in the hash chain by the element
corresponding to (k-seqno)*m —+dist in the generation order of the hash chain.

Incrementing the metric is reflected in the hash chain by performing a single hash.
Note that a bad node could still advertise the same metric that they receive.

Verification of the authenticity of an update is ensured by hashing the received hash value an
appropriate number of times and checking it against a previously authenticated hash value (or the
anchor).

2.Packet leashes along with Hash tree chains to avoid the same distance attack.

Hash tree chains tie the authenticator with the sending node id, and along with packet leashes
ensure that bad nodes cannot advertise the same metric that they receive.

Each node corresponds to a different leaf node in the hash-tree. The packet leashes ensure that a
node can detect that the node that sent it the packet is really its neighbor. Since each node has to
specify a different path up the hash- tree, it cannot advertise the same metric and needs to follow
the hash tree structure to the next level.

3.Neighbour Authentication to ensure that the advertiser of the information is authentic.
This is because SEAD could potentially select the next-hop to be the advertiser.
This authentication is achieved via TESLA or by having a key per pair of nodes.

This authentication is redundant if we have packet leashes.

Analysis Process:
An equivalence based approach:

The security criterion that we are trying to check is that SEAD maintains correct routing state
at the good nodes in the network in the presence of multiple un-coordinated attackers.

A natural formulation of the checking is to compare the secure version of the Routing protocol in
the presence of attackers against the un-secured version in the absence of attackers. What this

does is that it allows checking precisely what the secure version attempts to achieve which is
equivalence to the non-secure version without any attackers.

We think that the equivalence-based method allows easy formulation of the security criteria.

We chose not to compare the two protocols at all steps, but only in the steady states of the
network.




These steady states are defined by all the states where the good nodes cannot make any moves.

We printed out all the steady states that the protocol reached by hacking Mur¢ to output all the

states in which the good nodes had no further moves.

A typical scenario was to simulate topology changes (as described in the next section) and check
whether the final routing state achieved was the same as the case in the absence of attackers.

We used the all-pairs shortest path algorithm to find the routing state achieved in the un-secured
scenario.

Mixture of simulation and verification:

Ideally we would have liked to run verification for a large number of nodes with a fraction of the
nodes being attacker nodes. We would also have liked to enumerate all possible connectivities.

The state space however was very large. So the idea that we adopted was to simulate sequence of
random topologies, and verify the protocol against all possible attacker moves.

Simulating changing topology:
We use a C program to generate a sequence of topologies ,where each successive topology has

exactly one node moved to a new place. That is it differs from the previous topology in one row
and one column.

Simulating the Hash chains:

We assumed a Dolev-Yao model, i.e. the hashing is hard to invert. Thus the moves that we
simulated for the attacker always caused it to advertise higher hash chain( in the gene members
than it received. To be precise, lower sequence numbers or equal sequence numbers and higher
metrics.

The difference between SEAD and SuperSEAD is the fact that in SEAD a bad node can advertise
the same metric for a particular destination that it has received about that destination.
SuperSEAD uses hash tree chains to guard against this situation

We assumed that the neighbor authentication and packet leashes are present.

Attack Scenarios that we inspected:

1.We ran Mur¢ for the case with the packet leashes, hash chains present and found no attack.

2.We ran the protocol without the hash chain present and found the obvious attack.



That is the bad nodes cause incorrect routing state by advertising arbitrary distance values.

3.We also simulated a tunnel scenario, where two bad nodes could share the routing information,
essential simulating routing information being tunneled as data.
We found a wormhole attack in this case.

4.We also noted if the protocol used geographical packet leashes, in allows the attackers to use
this information to place themselves at specific spots in the network to form a cut, of the network.

5.We simulated a situation where even in the presence of packet leashes and hash chain trees, if
there are k(>1) bad nodes on path then they can reduce the length of the path by k-1.

Challenges Faced:

1.We found it hard to specify what the security invariant should be, and at what states we should
check it.

It was interesting to note that the concept of a deadlock actually came in handy during the
analysis of a security protocol.
2. We ran into trouble with an inconsistent specification of the Murd grammar.
The non-terminal ‘quantifier’ is specified as follows:
<quantifier> ::= <ID> : <typeExpr>

| <ID> := <expr> to <expr> [ by <expr> |

The second production does not function within a rule-set. A work around for this to use the
following production instead:
<quantifier> ::=

| <ID> : expr to expr

3.1t would be nice to have a formal protocol description language that is universally accepted,
requiring that all new protocols be specified in this language. It would simplify the
communication of protocols.

Conclusions regarding SuperSEAD:

1.SEAD makes the does not allow for new nodes to join the network.
In MANET this seems to be an unrealistic requirement.

2.1t is unable to defend against a simple collusion attack, involving two attacker nodes sharing
information via a tunnel.(Sending the routing information as data).

This attack can be used to achieve a wormhole between the two bad nodes. This causes a
lot of communication to pass through them. This situation can then be exploited further to achieve
further attacks.

3.The protocol description for SEAD was in prose, and we took a number of decisions based on
our understanding of what the authors meant.



4.The protocol uses hash chains and related constructs very effectively for authentication.
These constructs would also satisfy the low power requirement.

5.The protocol does not guard against denial of service attacks. The authors justify this by saying
that such attacks begin at the physical layer and should be dealt with there.

This justification is not completely reasonable as denial of service is possible at the network layer
even without any physical jamming of signals.

Conclusions regarding Tools:

1.Mur¢ should allow a mixture of simulation and verification methods. This allows the user can
perform state space reduction in a natural manner by marking certain rules for simulation and
others for verification.

We do not think that there would be any fundamental difficulty in trying to modify Mur¢
in trying to accomplish this.

2.1t would be nice to have a channel abstraction in Mur¢, with a specification of all the entities
that could listen in on the channel, in terms of a connectivity matrix.
This might simplify the modeling of attacker knowledge, in the case of weaker attackers.

3. Also some of the trace sequences that we read were extremely long, and it might help
introducing ‘program slicing’ ideas to printing traces.

This can be done as follows: A set of variables that represents a subset of the entire state
space is specified and a the trace printed contains only states that differ in one of these variables
from the previous state.
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