
Christopher Hsu
CS259

Project Summary

In this project I studied the iKP protocol family. In particular, I examined the 1KP
protocol in detail, and compared results drawn to documented results of 2KP and 3KP.

I modeled 1KP using Murϕ to examine effects of removing components. Since the 1KP
protocol deliberately ignores encryption (except that of credit card numbers), it was
usually irrelevant to examine the knowledge that an eavesdropper could obtain.
However, although there was no explicit encryption of messages sent on the wire, there
are cryptographic primitives embedded into the individual components of those
messages. The most challenging aspect in attempting to create an accurate Murϕ
description of 1KP was to see which cryptographic functions could be or needed to be
abstracted.

As explained in the presentation, the SALT component is essential to prevent an
eavesdropper listening on the Authentication-Request line (i.e. merchant to acquirer)
from making a dictionary attack to determine the value of DESC (a description of the
purchase order). Since the dictionary attack involves computing the hashed value of
DESC (either by itself or concatenated with SALT), this was difficult to directly model
with Murϕ. Instead, I wrote a slightly different invariant to model a similar effect. The
invariant states that no intruder ever knows both the SALT and DESC of the same
customer. A failure of this invariant indicates that an eavesdropper can perform a
dictionary attack, since he knows both DESC and SALT and can compute the hash value
of their concatenation.

In effect, what I modeled was an alternate aspect of 1KP. Namely, instead of taking
SALT out of the protocol, I modeled the ability of the intruder to learn SALT based on
his power. This power is configurable to either allow the eavesdropper to listen on the
Initiate line (i.e. customer to merchant) or not, based on the constant EVE_INIT.
Learning SALT (and therefore violating the invariant) corresponds to the possibility of a
dictionary attack, whereas when the invariant is satisfied, no dictionary attack is possible.
As expected, when EVE_INIT is true (i.e. the eavesdropper listens on two separate lines),
the invariant is violated. When EVE_INIT is false, the invariant is satisfied. Source code
for the intruder behavior and the invariant, as well as a violating trace, is given at the end
of this document.

I attempted to prove some documented unsatisfied requirements of 1KP, for example
proof of authentication of merchant by customer. However, I found that Murϕ seemed
inappropriate for modeling such “proof” or “receipt” conditions. It was difficult to find a
way to model knowledge of an agent, or equivalently, to model an agent’s assurance of
some aspect that is not explicitly included in the messages. For such properties a paper
proof seems more appropriate.

// Intruder behavior, depends on EVE_INIT
-- intruder i intercepts messages
ruleset i: IntruderId do
choose j: net do
rule "Interception"
!ismember (net[j].source, IntruderId)

==>
var
temp: Message;
begin
alias msg: net[j] do
if msg.mType=M_AuthRequest then
int[i].descs[msg.desc] := true;

else
if msg.mType=M_Initiate & EVE_INIT then
int[i].salts[msg.salt] := true;

end;
end;

end;
end;

end;
end;

// Invariant
-- Intruder never knows desc and salt from same customer
invariant "Intruder does not know DESC"
forall i: IntruderId do
forall j: CustomerId do
!int[i].descs[j] |
!int[i].salts[j]

end
end;

// Trace for weak intruder (EVE_INIT = false):
Status:

No error found.

State Space Explored:

6 states, 9 rules fired in 0.30s.

// Trace for strong intruder (EVE_INIT = true):
Startstate Startstate 0 fired.
cus[CustomerId_1].state:C_SLEEP
cus[CustomerId_1].merchant:CustomerId_1
mer[MerchantId_1].state:M_SLEEP
mer[MerchantId_1].customer:MerchantId_1
mer[MerchantId_1].acquirer:AcquirerId_1
acq[AcquirerId_1].state:A_SLEEP
acq[AcquirerId_1].merchant:Undefined
int[IntruderId_1].salts[CustomerId_1]:false
int[IntruderId_1].salts[MerchantId_1]:false
int[IntruderId_1].salts[AcquirerId_1]:false
int[IntruderId_1].salts[IntruderId_1]:false
int[IntruderId_1].descs[CustomerId_1]:false
int[IntruderId_1].descs[MerchantId_1]:false
int[IntruderId_1].descs[AcquirerId_1]:false
int[IntruderId_1].descs[IntruderId_1]:false

Rule Initiate, j:MerchantId_1, i:CustomerId_1 fired.
net{0}.source:CustomerId_1
net{0}.dest:MerchantId_1
net{0}.key:Undefined
net{0}.mType:M_Initiate
net{0}.salt:CustomerId_1
net{0}.cid:CustomerId_1
net{0}.mid:Undefined
net{0}.nonce:Undefined
net{0}.desc:Undefined
net{0}.encslip:Undefined
net{0}.yn:Undefined

net{0}.sig:Undefined
cus[CustomerId_1].state:C_WAIT
cus[CustomerId_1].merchant:MerchantId_1

Rule Interception, i:IntruderId_1, j:0 fired.
int[IntruderId_1].salts[CustomerId_1]:true

Rule Invoice, j:0, i:MerchantId_1 fired.
net{0}.source:MerchantId_1
net{0}.dest:CustomerId_1
net{0}.mType:M_Invoice
net{0}.salt:Undefined
net{0}.cid:Undefined
net{0}.mid:MerchantId_1
net{0}.nonce:MerchantId_1
mer[MerchantId_1].state:M_WAIT
mer[MerchantId_1].customer:CustomerId_1

Rule Payment, j:0, i:CustomerId_1 fired.
net{0}.source:CustomerId_1
net{0}.dest:MerchantId_1
net{0}.mType:M_Payment
net{0}.mid:Undefined
net{0}.nonce:Undefined
net{0}.encslip:CustomerId_1
cus[CustomerId_1].state:C_AUTH

Rule AuthRequest, j:0, i:MerchantId_1 fired.
net{0}.source:MerchantId_1
net{0}.dest:AcquirerId_1
net{0}.mType:M_AuthRequest
net{0}.salt:CustomerId_1
net{0}.desc:CustomerId_1
mer[MerchantId_1].state:M_AUTH

Rule Interception, i:IntruderId_1, j:0 fired.
The last state of the trace (in full) is:
net{0}.source:MerchantId_1
net{0}.dest:AcquirerId_1
net{0}.key:Undefined
net{0}.mType:M_AuthRequest
net{0}.salt:CustomerId_1
net{0}.cid:Undefined
net{0}.mid:Undefined
net{0}.nonce:Undefined
net{0}.desc:CustomerId_1
net{0}.encslip:CustomerId_1
net{0}.yn:Undefined
net{0}.sig:Undefined
cus[CustomerId_1].state:C_AUTH
cus[CustomerId_1].merchant:MerchantId_1
mer[MerchantId_1].state:M_AUTH
mer[MerchantId_1].customer:CustomerId_1
mer[MerchantId_1].acquirer:AcquirerId_1
acq[AcquirerId_1].state:A_SLEEP
acq[AcquirerId_1].merchant:Undefined
int[IntruderId_1].salts[CustomerId_1]:true
int[IntruderId_1].salts[MerchantId_1]:false
int[IntruderId_1].salts[AcquirerId_1]:false
int[IntruderId_1].salts[IntruderId_1]:false
int[IntruderId_1].descs[CustomerId_1]:true
int[IntruderId_1].descs[MerchantId_1]:false
int[IntruderId_1].descs[AcquirerId_1]:false
int[IntruderId_1].descs[IntruderId_1]:false

End of the error trace.

==

Result:

Invariant "Intruder does not know DESC" failed.

State Space Explored:

11 states, 15 rules fired in 0.11s.

