
1

Analysis of an Internet Voting
Protocol

Dale Neal
Garrett Smith

Electronic Voting

• Electronic voting at a precinct
– Focus is on preventing fraud on the part of

people building and running system.
• Electronic voting over the internet

– Must prevent fraud for all parties
– Must provide anonymity for voters

Our chosen protocol

• An Anonymous Electronic Voting Protocol
for Voting Over The Internet

• Indrajit Ray, Indrakshi Ray, Natarajan
Narasimhamurthi

• University of Michigan

• Most research on internet voting focuses on
new cryptographic primitives.
– Not interesting to model at a protocol layer.

Building Blocks

• Public Key Cryptography
• Hard-to-invert permutations
• Blind Signatures on mesages

Notation
• Ve – V’s encryption key
• Vd – V’s decryption key (signing key)
• [x, Vd] – x encrypted with Vd
• h(x) – hash of x
• {} – grouping
• x * [b, Ve] – blinded submission of x for

signature by V
• [{x * [b, Ve]}, Vd] – V’s blind signature of

x, can be converted to [x, Vd] knowing b.

Protocol Overview
Ballot Distributor Certification

Authority
Vote Counter

Voter Voter Imposter

2

Pre-protocol setup

Voter Voter Imposter

Registration
Authority Voters register and are issued a

certificate with public key and identity.

Ballot Distributor Certification
Authority

Vote Counter

Voter

Blank Ballot Distribution

[{y, [h(y), BDd]}, Ve]

y – ballot serial number

Generate a voter mark

• Voter mark allows voter to identify their
ballot without letting others identify their
ballot.

• Generated by a one-way permutation of the
serial number.

• Poorly described in the paper
– We assume they meant a keyed hash.

Voter Certification (part a)
Ballot Distributor Certification

Authority
Vote Counter

Voter

y – serial number

m – voter mark

r – blinding factor

[{m * [r,CAe], [h(m*[r,CAe]), Vd], V}, CAe]

Voter Certification (part b)
Ballot Distributor Certification

Authority
Vote Counter

Voter

y – serial number

m – voter mark

r – blinding factor

[[{m * [r,CAe]}, CAd], Ve]

Vote Casting
Ballot Distributor Certification

Authority
Vote Counter

Voter

[{vote, [m, CAd]}, VCe]

m – voter mark
Note: Abstracted away
public FTP server
intermediary

3

Publishing
Ballot Distributor Certification

Authority
Vote Counter

{vote2, [m2, CAd]}

{vote1, [m1, CAd]}

{vote3, [m3, CAd]}

{m1 * [r,CAe],
[h(m1*[r,CAe]), V1d]}

{m2 * [r,CAe],
[h(m2*[r,CAe]), V2d]}

{m3 * [r,CAe],
[h(m3*[r,CAe]), V3d]}

y1

y2

y3

Attack Model

• Any of CA, BD, VC could collude among
themselves and with any voters.
– Only colluding voters votes should be affected

• If fraud occurs, the fraud can be proved

Claimed Properties

• Only eligible voters are able to cast votes
• A voter is able to cast only one vote
• A voter is able to verify that his or her vote is

counted in the final tally
• Nobody other than the voter can link a cast vote

with a voter
• If a voter decides not to vote, nobody is able to

cast a fraudulent vote in place of the voter.

Modeling in Murphi

• Encryption, signatures modeled same as in
Needham-Schroeder with AgentId

• Serial number, voter mark, blind signatures
modeled in the same way.

• Registered and unregistered voters
• BD, CA, VC can all act fraudulently, and

accept invalid data

Invariants

• Different type of invariant than for
Needham-Schroeder and other
authentication protocols.

• Of the type: if there is fraud, can a party
detect it?

invariant "voter can prove fraud if their vote is uncounted"
forall i: GoodVoterId do

forall j: VCId do
voter[i].state = V_VOTED &
multisetcount (l:vc[j].votes,

vc[j].votes[l].signedMark = voter[i].signedMark) = 0
->
ismember(voter[i].ballotSigner, BDId) &
ismember(voter[i].markSigner, CAId)

end
end;

4

invariant "voter cannot claim fraud when they don’t vote"
forall i: GoodVoterId do
forall j: VCId do
voter[i].state != V_VOTED &
multisetcount(l:vc[j].votes,

vc[j].votes[l].signedMark = voter[i].signedMark &
vc[j].votes[l].vote = true) = 0

->
!(ismember(voter[i].ballotSigner, BDId) &

ismember(voter[i].markSigner, CAId))
end

end;

Invariant is violated

• After Voter Certification voter has:
– Serial number signed by BD
– Voter mark signed by CA

• VC cannot demonstrate it never received
vote as opposed to VC discarding the vote.

• Since any voter can demonstrate fraud even
if none exists, demonstrations of fraud have
no meaning.

Detecting know flaws

• We were able to construct an invariant to
detect a flaw discussed in the paper:
If a voter completes Voter Certification, but
does not vote the three agents can collude

to cast a fraudulent vote in that voters
place.

invariant "a fraudulent vote can be detected"
forall i: VCId do

forall j: CAId do
multisetcount(l:vc[i].votes,

vc[i].votes[l].vote = false) > 0
->
multisetcount(l:vc[i].votes, true) >

multisetcount(m:ca[j].certifications,
ca[j].certifications[m].response)

-- if there is a fraudulent vote, there must
-- be more votes than published certified voters.

end
end;

Deficiencies we couldn’t model

• Ballot distribution seems unnecessary
– Voter chooses nonce
– CA keeps track of which voters have submitted nonces

for blind signature and only signs one nonce per
registered voter

• Encrypting traffic makes it harder for bystanders
to eavesdrop, but doesn't provide any extra
guarantees because even with CA, BD, and VC
colluding they can’t determine who cast what
vote.

Benefits of modeling

• Ambiguities in the protocol description
were cleared up by modeling the protocol
and figuring out what had to be provided to
ensure desired properties

5

Conclusions

• Being able to demonstrate fraud when there
is none is a fatal flaw.

• Murphi is not well suited to modeling this
flavor of protocol.
– All of the flaws we found were discovered

while trying to model the protocol
– Proof oriented analysis seems to be a better fit

• Prove for each type of fraud, that if it happens, then
an honest party can prove that it happened

