
CS259 - Security Analysis of Network Protocols

Winter Quarter, 2006
Solutions for Homework #1

January 22, 2006

Problem 1

In this problem you only had to run the supplied Murϕ code to check if the authentication invariants hold for
the NS protocol. Invariant "responder correctly authenticated" holds while the invariant "initiator
correctly authenticated" fails. Inspection of the trace leads to an attack that can be described using the
arrows-and-messages diagram as follows:

A → I : {|A,NA|}KI

I(A) → B : {|A,NA|}KB

B → I(A) : {|NA, NB |}KA

I → A : {|NA, NB |}KA

A → I : {|NB |}KI

I(A) → B : {|NB |}KB

Problem 2

Invariant modelling secrecy of the initiator’s nonce can be written down using Murϕ as follows:

invariant "initiator secrecy"
forall i: InitiatorId do

ini[i].state = I_COMMIT & ismember(ini[i].responder, ResponderId)
->
forall j: IntruderId do

int[j].nonces[i] = false
end

end;

Invariant modelling secrecy of the responder’s nonce can be written down using Murϕ as follows:

invariant "responder secrecy"
forall i: ResponderId do

res[i].state = R_COMMIT & ismember(res[i].initiator, InitiatorId)
->
forall j: IntruderId do

int[j].nonces[i] = false
end

end;

For the NS protocol invariant "responder secrecy" fails and the inspection of the trace leads to the same
attack described in the previous problem. Invariant "initiator secrecy" holds for the NS protocol. For
the NSL protocol both invariants hold.

1

Problem 3

In the first part of the problem, you are required to modify the model so that initiators only initiate
conversation with honest responders. The modification involves changing the guard of the first rule for the
intitiator as follows:

-- initiator i starts protocol with responder or intruder j (step 3)
ruleset i: InitiatorId do
ruleset j: AgentId do
rule 20 "initiator starts protocol (step 3)"

ini[i].state = I_SLEEP &
-- !ismember(j,InitiatorId) & -- ORIGINAL: responders and intruders

ismember(j,ResponderId) & -- NEW : only responders
multisetcount (l:net, true) < NetworkSize

==>
...

All four invariants are satisfied for the NS protocol with this modification.
In the second part of the problem, you are required to modify the model so that attackers only intercept

messages that are destined to them. The modification is complicated by the fact that the adversary model
is optimized. The optmimization reduces the number of states that need the be checked by having honest
principals accept messages only from the intruder. Thus, the intruder is the only principal who directly reads
messages from honest principals. It takes a little thought to see that this optmization does not preclude any
attacks. The first of our modifications effectively rerverses this optimization. We modify the initiator and
responder rules to accept messages from honest peers. One such modification is shown below.

-- initiator i reacts to nonce received (steps 6/7)
ruleset i: InitiatorId do
choose j: net do
rule 20 "initiator reacts to nonce received (steps 6/7)"

ini[i].state = I_WAIT &
net[j].dest = i -- &

-- ismember(net[j].source,IntruderId) --This line is not commented
--out in the optimized code.

==>
....

Second, we modify the attacker code, so that it only receives messages that are destined to it.

-- intruder i intercepts messages
ruleset i: IntruderId do
choose j: net do

rule 10 "intruder intercepts"

(!ismember (net[j].source, IntruderId)) & -- not for intruders’ messages
ismember(net[j].dest,IntruderId) -- This line not in the original code

==>

2

As in the case of the NS protocol, "initiator correctly authenticated" and "responder secrecy"
fail, and the other invariants hold.

Problem 4

In this problem you had to modify the model so that the intruder can change agent names inside encrypted
messages, even without knowing the decryption key. One way to achieve this is to modify the "intruder
sends recorded message" as follows:

ruleset i: IntruderId do
choose j: int[i].messages do

ruleset k: AgentId do
ruleset a: AgentId do

rule 90 "intruder sends recorded message"
!ismember(k, IntruderId) &
multisetcount (l:net, true) < NetworkSize

==>
var

outM: Message;
begin

outM := int[i].messages[j];
outM.source := i;
outM.dest := k;
if outM.mType = M_NonceAddress then

outM.nonce2 := a
end;
if outM.mType = M_NonceNonceAddress then

outM.address := a
end;
multisetadd(outM,net);

end;
end;

end;
end;

end;

With the improved intruder, all invariants fail. Invariants "initiator correctly authenticated" and
"responder secrecy" fail with an attack that is similar to the previously described attack on NS protocol:

A → I : {|A,NA|}KI

I(A) → B : {|A,NA|}KB

B → I(A) : {|B,NA, NB |}KA

I → A : {|I, NA, NB |}KA

A → I : {|NB |}KI

I(A) → B : {|NB |}KB

Invariants "responder correctly authenticated" and "initiator secrecy" fail with an attack that can
be described as follows:

A → I(B) : {|A,NA|}KB

I → B : {|I,NA|}KB

B → I : {|B,NA, NB |}KI

I(B) → A : {|B,NA, NB |}KA

A → I(B) : {|NB |}KB

I → B : {|NB |}KB

3

