
1

Security Analysis of
Network Protocols

Vitaly Shmatikov
SRI

CS 259

http://www.stanford.edu/class/cs259/

John Mitchell
Stanford

Course organization

�Lectures
• Tues, Thurs for approx first six weeks of quarter
• Project presentations last three weeks

�This is a project course
• There may be one or two short homeworks
• Most of your work will be project and presentation

Please enroll!

Computer Security

�Cryptography
• Encryption, signatures, cryptographic hash, …

�Security mechanisms
• Access control policy
• Network protocols

� Implementation
• Cryptographic library
• Code implementing mechanisms

– Reference monitor and TCB
– Protocol

• Runs under OS, uses program library, network protocol stack

Analyze protocols, assuming crypto, implementation, OS correct

Cryptographic Protocols

�Two or more parties
�Communication over insecure network
�Cryptography used to achieve goal

• Exchange secret keys
• Verify identity (authentication)

Class poll:
Public-key encryption, symmetric-key encryption, CBC, hash,
signature, key generation, random-number generators

Correctness vs Security

�Program or System Correctness
• Program satisfies specification

– For reasonable input, get reasonable output

�Program or System Security
• Program properties preserved in face of attack

– For unreasonable input, output not completely disastrous

�Main differences
• Active interference from adversary
• Refinement techniques may fail

Security Analysis

�Model system
�Model adversary
�Identify security properties
�See if properties preserved under attack

�Result
• No “absolute security”
• Security means: under given assumptions about

system, no attack of a certain form will destroy
specified properties.

2

Important Modeling Decisions

�How powerful is the adversary?
• Simple replay of previous messages
• Block messages; Decompose, reassemble and resend
• Statistical analysis, partial info from network traffic
• Timing attacks

�How much detail in underlying data types?
• Plaintext, ciphertext and keys

– atomic data or bit sequences

• Encryption and hash functions
– “perfect” cryptography
– algebraic properties: encr(x*y) = encr(x) * encr(y) for

RSA encrypt(k,msg) = msgk mod N

This has been our research area

�Automated nondeterministic finite-state analysis
• General paper, Oakland conference, 1997 [JM, …]

• Efficiency for large state spaces, 1998 [VS, …]

• Analysis of SSL, 1998-99 [VS, JM, …]

• Analysis of fair exchange protocols, 2000 [VS, JM, …]

�Automated probabilistic analysis
• Analysis of probabilistic contract signing, 2004 [VS, …]

• Analysis of an anonymity system, 2004 [VS, …]

�Beyond finite-state analysis
• Decision procedures for unbounded # of runs
• Proof methods, assuming idealized cryptography
• Beyond idealized cryptography

Many others have worked on these topics too …

Some other projects and tools

�Exhaustive finite-state analysis
• FDR, based on CSP [Lowe, Roscoe, Schneider, …]

�Search using symbolic representation of states
• Meadows: NRL Analyzer, Millen: Interrogator

�Prove protocol correct
• Paulson’s “Inductive method”, others in HOL, PVS, …
• MITRE -- Strand spaces
• Process calculus approach: Abadi-Gordon spi-

calculus, applied pi-calculus, …
• Type-checking method: Gordon and Jeffreys, …

Many more – this is just a small sample

Example: Needham-Schroeder

�Famous simple example
• Protocol published and known for 10 years
• Gavin Lowe discovered unintended property while

preparing formal analysis using FDR system

�Background: Public-key cryptography
• Every agent A has

– Public encryption key Ka
– Private decryption key Ka-1

• Main properties
– Everyone can encrypt message to A
– Only A can decrypt these messages

Needham-Schroeder Key Exchange

{ A, NonceA }

{ NonceA, NonceB }

{ NonceB}

Ka

Kb

Result: A and B share two private numbers
not known to any observer without Ka-1, Kb -1

A B
Kb

Anomaly in Needham-Schroeder

A E

B

{ A, NA }

{ A, NA }{ NA, NB }

{ NA, NB }

{ NB }

Ke

KbKa

Ka

Ke

Evil agent E tricks
honest A into revealing
private key NB from B

Evil E can then fool B

[Lowe]

3

Explicit Intruder Method

Intruder
Model

Analysis
Tool

Formal
Protocol

Informal
Protocol

Description

Find error

Murϕ [Dill et al.]

�Describe finite-state system
• State variables with initial values
• Transition rules
• Communication by shared variables

�Scalable: choose system size parameters
�Automatic exhaustive state enumeration

• Space limit: hash table to avoid repeating states

�Research and industrial protocol verification

Finite-state methods

�Two sources of infinite behavior
• Many instances of participants, multiple runs
• Message space or data space may be infinite

�Finite approximation
• Assume finite participants

– Example: 2 clients, 2 servers

• Assume finite message space
– Represent random numbers by r1, r2, r3, …
– Do not allow encrypt(encrypt(encrypt(…)))

Verification vs Error Detection

�Verification
• Model system and attacker
• Prove security properties

�Error detection
• Model system and attacker
• Find attacks

Applying Murϕ to security protocols
�Formulate protocol
�Add adversary

• Control over “network” (shared variables)

• Possible actions
– Intercept any message
– Remember parts of messages
– Generate new messages, using observed data and initial

knowledge (e.g. public keys)

Needham-Schroeder in Murϕ (1)

const

NumInitiators: 1; -- number of initiators

NumResponders: 1; -- number of responders

NumIntruders: 1; -- number of intruders

NetworkSize: 1; -- max. outstanding msgs in network

MaxKnowledge: 10; -- number msgs intruder can remember

type

InitiatorId: scalarset (NumInitiators);

ResponderId: scalarset (NumResponders);

IntruderId: scalarset (NumIntruders);

AgentId: union {InitiatorId, ResponderId, IntruderId};

4

Needham-Schroeder in Murϕ (2)

MessageType : enum { -- types of messages

M_NonceAddress, -- {Na, A}Kb nonce and addr

M_NonceNonce, -- {Na,Nb}Ka two nonces

M_Nonce -- {Nb}Kb one nonce

};

Message : record

source: AgentId; -- source of message

dest: AgentId; -- intended destination of msg

key: AgentId; -- key used for encryption

mType: MessageType; -- type of message

nonce1: AgentId; -- nonce1

nonce2: AgentId; -- nonce2 OR sender id OR empty

end;

Needham-Schroeder in Murϕ (3)

-- intruder i sends recorded message

ruleset i: IntruderId do -- arbitrary choice of

choose j: int[i].messages do -- recorded message

ruleset k: AgentId do -- destination

rule "intruder sends recorded message"

!ismember(k, IntruderId) & -- not to intruders

multisetcount (l:net, true) < NetworkSize

==>

var outM: Message;

begin

outM := int[i].messages[j];

outM.source := i;

outM.dest := k;

multisetadd (outM,net);

end; end; end; end;

Adversary Model

�Formalize “knowledge”
• initial data
• observed message fields
• results of simple computations

�Optimization
• only generate messages that others read
• time-consuming to hand simplify

�Possibility: automatic generation

number of size of
ini. res. int. network states time
1 1 1 1 1706 3.1s
1 1 1 2 40207 82.2s
2 1 1 1 17277 43.1s
2 2 1 1 514550 5761.1s

Run of Needham-Schroeder

�Find error after 1.7 seconds exploration
�Output: trace leading to error state
�Murϕ times after correcting error:

Limitations

�System size with current methods
• 2-6 participants

Kerberos: 2 clients, 2 servers, 1 KDC, 1 TGS

• 3-6 steps in protocol
• May need to optimize adversary

�Adversary model
• Cannot model randomized attack
• Do not model adversary running time

5

Security Protocols in Murϕ

�Standard “benchmark” protocols
• Needham-Schroeder, TMN, …
• Kerberos

�Study of Secure Sockets Layer (SSL)
• Versions 2.0 and 3.0 of handshake protocol
• Include protocol resumption

�Tool optimization
�Additional protocols

• Contract-signing
• Wireless networking

… ADD YOUR PROJECT HERE …

State Reduction on N-S Protocol

1706

17277

514550

980

6981

155709

58
222

3263

1

10

100

1000

10000

100000

1000000

1 init
1 resp

2 init
1 resp

2 init
2 resp

Base: hand
optimization
of model

CSFW:
eliminate
net, max
knowledge
Merge
intrud send,
princ reply

Plan for this course

�Protocols
• Authentication, key establishment, assembling

protocols together (TLS ?), fairness exchange, …

�Tools
• Finite-state and probabilistic model checking,

constraint-solving, process calculus, temporal logic,
proof systems, game theory, polynomial time …

�Projects
• Choose a protocol or other security mechanism
• Choose a tool or method and carry out analysis
• Hard part: formulating security requirements

Reference Material (CS259 web site)

� Protocols
• Clarke-Jacob survey
• Use Google; learn to read an RFC

� Tools
• Murphi

– Finite-state tool developed by David Dill’s group at Stanford
• PRISM

– Probabilistic model checker, University of Birmingham
• MOCHA

– Alur and Henzinger; now consortium
• Constraint solver using prolog

– Shmatikov and Millen
• Isabelle

– Theorem prover developed by Larry Paulson in Cambridge, UK
– A number of case studies available on line

Hope you enjoy the course

�We’ll lecture for a few weeks to get started
• Case studies are the best way to learn this topic
• Cathy Meadows guest lecture next Thursday

�Choose a project that interests you !!!
• If you have another idea, come talk with us
• Can build or extend a tool, or paper study if you prefer

Protocols and other mechanisms

� Secure electronic transactions (SET) or other e-commerce protocols
� Onion routing or other privacy mechanism
� Firewall policies
� Electronic voting protocols
� Publius: censorship-resistant Web publishing
� Group key distribution protocols
� Census protocols
� Stream signing protocols:
� Analysis/verification/defense against MCI's network routing scam

• Apparently, MCI routed long-distance phone calls through small local
companies and Canada to avoid paying access charges to local carriers)

� Wireless networking protocols

