Logic for Computer Security
Protocols

Ante Derek

Intuition

@ Reason about local information
* I chose a new number
+ I sent it out encrypted
+ T received it decrypted
+ Therefore: someone decrypted it
@ Incorporate knowledge about protocol
+ Protocol: Server only sends m if it received m’

+ If server not corrupt and I receive m signed by
server, then server received m'

Example: Challenge-Response

_——

* reasons: if is honest, then:
- only can generate his signature. [protocol independent]
- if generates a signature of the form
- he sends it as part of msg2 of the protocol and
- he must have received msgl from

* deduces: Received (B, msgl) A Sent (B, msg2)

Outline

®Last lecture
+ Floyd-Hoare logic of programs
* BAN logic

Today

+ Compositional Logic for Proving Security
Properties of Protocols

Intuition: Picture

NE _

) @ Alice's information
* Protocol
* Private data
+ Sends and receives

Formalizing the Approach

#Language for protocol description

* Arrows-and-messages are informal.
®Protocol Semantics

* How does the protocol execute?
®Protocol logic

+ Stating security properties.
®Proof system

« Formally proving security properties.

Cords

®"protocol programming language” 2 constant term

- A protocol is described by specifying a variable
“program" for each role name
- Server = [receive x; hew h; send {x, n}] key
#Building blocks . tupling
- Terms i signature
- names, honces, keys, encryption, ... encryption
* Actions

- send, receive, pattern match, ... Example: X, sigB{m, X, A} is a term

Actions Challenge-Response as Cords

send t; send a ferm t
receive X; receive a term into variable x
match 1/p(x); match term t against p(x)
— O S
@ A Cord is just a sequence of actions
TnitCR(A, X) = [RespCR(B) = [

‘NOTGT!OH: new m; receive Y, B, {y, Y}
- we often omit match actions send A, X, {m, A} new n;

. : : _ : . : receive X, A, {x, sig,{m, x, A}}; send B, Y, {n, sigg{y, n, Y}
receive sigg{A, n} = receive x; match x/sigg{A, n} i gt >9< i ey B si:f(; ey

Cord Spaces Execution Model

@ Cord space is a multiset of cords
@ Cords may react Protocol is a finite set of roles
* via communication Set of principals and keys
« via internal actions Assignment of >1 role to each principal
® Sample reaction steps:
* Communication: newx send {x}g Position in run
[S:sendt; ST® [T receivex; T 1= [S: S1®[T T(1/x)] A —
* Matching: receive {x}g receive {z}g v
[S: match p(+)/p(x): S' 1= [S: S'(1/x)] |
C —» new z -~ send {z}_»

Logical assertions

Modal operator
* [actions 1, & - after actions, P reasons ¢
®Predicates in ¢
+ Send(X,m) - principal X sent message m
* Receive(X,m) - principal X received message m
* Verify(X,m) - X verified signature m

* Has(X,m) - X created m or received msg
containing m and has keys to extract m from msg

+ Honest(X) - X follows rules of protocol

Semantics

@®Protocol Q

+ Defines set of roles (e.g, initiator, responder)

+ Run R of Q is sequence of actions by principals
following roles, plus attacker

@ Satisfaction
* Q,R |= [actions]p &

Some role of P in R does exactly actions and ¢ is
true in state after actions completed

- Q |= [actions 1p &
Q. R |= [actions], ¢ for all runs R of Q

Security Properties

@ Shared secret

NS |= [InitNS(A, B)], Honest(B) o
(Has(X, m) o X=A A X=B)

Formulas true at a position in run

Action formulas

a ::= Send(P,m) | Receive (P,m) | New(P,t)
| Decrypt (P,t) | Verify (P,t)

Formulas

¢ ::=a | Has(P,t) | Fresh(P,t) | Honest(N)
| Contains(ty, t,) | =@ | @14 0, | IX @
| Oo| Co

Example

After(a,b) = & (b A OCa)

Security Properties

@ Authentication for Initiator

CR |= [InitCR(A, B)], Honest(B) o
ActionsInOrder(

Send(A, {A,B,m}),

Receive(B, {A,B,m}),

Send(B, {B,A {n, sigg {m, n, A}}}),
Receive(A, {B,A{n, sigg {m, n, A}}})

Proof System

®Goal: formally prove properties
@ Axioms

- Simple formulas provable by hand
@ Inference rules

* Proof steps
@ Theorem

+ Formula obtained from axioms by
application of inference rules

Sample axioms about actions

¢ New data
* [new x }» Has(P,x)
* [new x }» Has(Y x) > Y=P
@ Actions
* [send m], & Send(P,m)
®Knowledge
- [receive m], Has(P,m)
& Verify
* [match x/sigy{m} 1, < Verify(P,m)

Encryption and signature

®Public key encryption
Honest(X) A ODecrypt(Y, enc,{m}) o X=Y

@ Signature
Honest(X) A OVerify(Y, sigy{m}) o
I m’ (&Send(X, m’) A Contains(m’, sigy{m})

Bidding conventions (motivation)

#Blackwood response to 4NT
-54&:00r 4 aces
-be :1lace
-5v : 2 aces
-5a4 : 3 aces
@ Reasoning
my partner is following Blackwood,
if she bid 5%, she must have 2 aces

Reasoning about knowledge

@Pairing
+ Has(X, {m,n}) o Has(X, m) A Has(X, n)

@ Encryption
* Has(X, ency(m)) A Has(X, K1) o Has(X, m)

Sample inference rules

@ Preservation rules
[actions], Has(X, 1)
[actions; action], Has(X, t)

@ Generic rules
[actions Jp & [actions Jp ¢
[actions Jr 0 A @

HOHZSTY rule (rule scheme)

Vroles R of Q. V initial segments A c R.
Q|- [Ao
Q |- Honest(X) > ¢

* This is a finitary rule:
- Typical protocol has 2-3 roles
- Typical role has 1-3 receives
- Only need to consider A waiting to receive

Honesty rule (example use) Correctness of CR

InitCR(A, X) = [RespCR(B) = [

new m; receive Y, B, {y, Y}
Vroles R of Q. V initial segments A c R. send A, X, {m, A}: new n;

receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, siggy, n, Y%

Q |' [A]X (D send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}};
Q |- Honest(X) > /
CR |- [InitCR(A, B)], Honest(B) o
ActionsInOrder(

* Example use: Send(A, {AB,m}),
Receive(B, {A,B,m}),
Send(B, {B,A {n, sigg {m, n, A}}}),
Receive(A, {B,A{n, sigg {m, n, A}}})

- If Y receives a message from X, and
Honest(X) o (Sent(X,m) o Received(X,m"))
then Y can conclude
Honest(X) o Received(X,m"))

Correctness of CR - step 1 Correctness of CR - step 2

InitCR(A, X) = [RespCR(B) = [InitCR(A, X) = [RespCR(B) = [
new m; receive Y, B, {y, Y} new m; receive Y, B, {y, Y}
send A, X, {m, A} hew h; send A, X, {m, A} hew h;
receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, siggy, n, Y1 receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, sigg{y, n, Y1
send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}}; send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}};
]]]]

1. A reasons about it's own actions 2. Properties of signatures

CR |- [InitCR(A, B) 14 CR |- [InitCR(A, B)], Honest(B) o
<& Verify(A, sigg {m, n, A}) I m' (OSend(B, m') A Contains(m', sigg {m, n, A})

Correctness of CR - Honesty Correctness of CR - step 3

InitCR(A, X) = [RespCR(B) = [InitCR(A, X) = [RespCR(B) = [
new m; receive Y, B, {y, Y} new m; receive Y, B, {y, Y}
send A, X, {m, A} hew h; send A, X, {m, A} hew h;
receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, sigg{y, n, Y% receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, sigg{y, n, Y1
send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}}; send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}};
]]]]

Honesty invariant 3. Use Honesty rule
CR |- Honest(X) .
5 Send(X, m) A Contains(m’, sigy {y, x, ¥}) A = ONew(X, y) CR |- [InitCR(A, B)], Honest(B) >
m= X, Y, {x, sigly, x, Y}} A OReceive(X, {¥, X, {y, Y}}) & Receive(B’ {AIB’m}),

Correctness of CR - step 4

InitCR(A, X) = [RespCR(B) = [
new m; receive Y, B, {y, Y}
send A, X, {m, A} hew h;
receive X, A, {x, sigy{m, x, A}}; send B, Y, {n, siggy, n, Y1
send A, X, sig,{m, x, X}}; receive Y, B, sigy{y, n, B}};
]]
4. Use properties of nonces for
temporal ordering

CR |- [InitCR(A, B)], Honest(B)> Auth

We have a proof. So what?

€ Soundness Theorem:
- ifQl-0thenQ |= ¢

* If ¢ is a theorem then ¢ is a valid
formula

€0 holds in any step in any run of
protocol Q

* Unbounded number of participants
* Dolev-Yao intruder

Correctness of WCR - step 1

TnitWCR(A, X) = [RespWCR(B) = [
new m; receive Y, B, {y}:
send A, X, {m}; hew h;
receive X, A, {x, sigy{m, x}}; send B, Y, {n, sigy{y, n}}:
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}}:;
]

. A reasons about it's own actions
WCR |- [InitWCR(A, B) 14
<& Verify(A, sigg {m, n})

Complete proof

2,3,11,AF3
11, AF2
11,4, AF8

10 13,AF2

Weak Challenge-Response

_—— — M

InitWCR(A, X) = [RespWCR(B) = [
new m; receive Y, B, {y}:
send A, X, {m}; new n;
receive X, A, {x, sig,{m, x}}; send B, Y, {n, sigg{y, n}}::
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}}:
]]

Correctness of WCR - step 2

TnitWCR(A, X) = [RespWCR(B) = [
new m; receive Y, B, {y}:
send A, X, {m}; hew h;

receive X, A, {x, sigy{m, x}}; send B, Y, {n, sig{y, n}}:
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}}:;
]]
2. Properties of signatures
CR |- [InitCR(A, B)], Honest(B)D
I m' (OSend(B, m') A Contains(m', sigg {m, n, A})

Correctness of WCR - Honesty

TnitWCR(A, X) = [RespWCR(B) = [
new m; receive Y, B, {y}:
send A, X, {m}; hew h;
receive X, A, {x, sigy{m, x}}; send B, Y, {n, sig{y, n}}:
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}}:;
]

Honesty invariant
CR |- Honest(X)

>Send(X, m') A Contains(m’, sig, {y, x}) A = ONew(X, y) o
m= X, Z, {x, sigg{y, x}} A OReceive(X, {Z, X, {y, Z}})

Result

@ WCR does not have the strong
authentication property for the
initiator

Counterexample

* Intruder can forge senders and
receivers identity in first two messages
-A->X(B) m
-X()->B m
-B->X(C) n,sigg(m, n)
- X(B) ->A n, sigg(m, n)

Extensions

® Add Diffie-Hellman primitive
+ Can prove authentication and secrecy for
key exchange protocols (STS, ISO-
97898-3)
@ Add symmetric encryption and
hashing
* Can prove authentication for ISO-9798-
2, SKID3

Correctness of WCR - step 3

TnitWCR(A, X) = [RespWCR(B) = [
new m; receive Y, B, {y}:
send A, X, {m}; hew h;
receive X, A, {x, sigy{m, x}}; send B, Y, {n, sig{y, n}}:
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}}:;
]]

3. Use Honesty rule
WCR |- [InitWCR(A, B) 1, Honest(B) D
< Receive(B, {Z,B,m}),

Benchmarks

@ Can prove authentication for CR

@ Proof fails for WCR

Can prove repaired NSL protocol

@ Proof fails for original NS protocol

@®Proof fails for a variant of GDOI
protocol (C. Meadows, D. Pavlovic)

Derivation system

@®Protocol derivation

+ Build security protocols by combining parts from
standard sub-protocols

@®Proof of correctness

+ Prove protocols correct using logic that follows
steps of derivation

@ Reuse proofs

IS0-9798-3 Key Exchange

@ Authentication
+ Do we need to prove it from scratch?
@ Shared secret: g2

Parallel protocol composition

@ Assume that agents run both CR and
NSL using same public/private keys
« Is authentication property preserved?
® Honesty rule is only protocol specific
step in the proof sytem

* Properties are preserved if the new
protocol satisfies honesty invariants

Current work

®Formalize protocol refinements and
transformations

@ Automate proofs

Abstract challenge response

TnitACR(A, X) = [RespACR(B) = [
send A, X, {m}; receive Y, B, {y}:
receive X, A, {x, sigy{m, x}}; send B, Y, {n, siggly, n}}:
send A, X, sig,{m, x}}; receive Y, B, sigy{y, n}};
]]
@ Free variables m and n instead of nonces
€ Modal form: ¢ [actions] ¢
precondition: Fresh(A,m)
actions: [InitACR],
postcondition: Honest(B) > Authentication

@ Secrecy is proved from properties of
Diffie-Hellman

Combining protocols

r r

CR > Honest(X) > ... NSL » Honest(X) > ...
I |- CRAuthentication I" |- NSLAuthentication

Tur” |- CRAuthentication Tur” |- NSLAuthentication

Tur” |- CRAuthentication A NSLAuthentication

CR e NSL » TUT”
I

CR e NSL » CRAuthentication A NSLAuthentication

