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Symbolic Protocol Analysis 

CS 259

Vitaly Shmatikov

Overview

�Strand space model
�Protocol analysis with unbounded attacker

• Parametric strands
• Symbolic attack traces
• Protocol analysis via constraint solving

�SRI constraint solver

Protocol Analysis Techniques

Crypto protocol analysis

Formal models Computational models

Model checkingInductive method

Dolev-Yao
(perfect cryptography)

Random oracle
Probabilistic process calculi
Probabilistic I/O automata
…

Finite-state
checking

Protocol logics …

Symbolic analysis

Finite processes,
infinite attacker

Finite processes,
finite attacker

Probabilistic
model checking

Fully automated methods
always terminate and
give an answer

Obtaining a Finite Model

This restriction is not necessary
for fully automated analysis!

This restriction is necessary
(or the problem is undecidable)

�Two sources of infinite behavior
• Multiple protocol sessions, multiple participants
• Message space or data space may be infinite

�Finite approximation
• Assume finite sessions

– Example: 2 clients, 2 servers

• Assume finite message space
– Represent random numbers by r1, r2, r3, …
– Do not allow encrypt(encrypt(encrypt(…)))

Decidable Protocol Analysis

�Eliminate sources of undecidability
• Bound the number of protocol sessions

– Artificial bound, no guarantee of completeness

• Bound structural size of messages by lazy 
instantiation of variables

• Loops are simulated by multiple sessions

�Secrecy and authentication are NP-complete if 
the number of protocol instances is bounded

[Rusinowitch, Turuani ’01]

�Search for solutions can be fully automated
• Several tools; we’ll talk about SRI constraint solver

Strand Space Model [Thayer, Herzog, Guttman ’98]

�A strand is a representation of a protocol “role”
• Sequence of “nodes”
• Describes what a participant playing one side of the 

protocol must do according to protocol specification

�A node is an observable action
• “+” node: sending a message
• “-”  node: receiving a message

�Messages are ground terms
• Standard formalization of cryptographic operations: 

pairing, encryption, one-way functions, …
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Participant Roles in NSPK

Protocol
A→B {n,A}kb
B→A {n,r}ka
A→B {r}kb

“B” role

B← {n,A}kb
B→ {n,r}ka
B← {r}kb

Controls network and can
schedule any consistent
interleaving of these roles

A→ {n,A}kb
A← {n,r}ka
A→ {r}kb

“A” role

NSPK in Strand Space Model

+{n,A}kb

“A” strand

-{n,r}ka

+{r}kb

-{n,A}kb

“B” strand

+{n,r}ka

-{r}kb

{x}k

“Penetrator” strands

k-1

x

x

k

{x}k

� Each primitive capability of the 
attacker is a “penetrator” strand

� Same set of attacker strands for 
every protocol 

Bundles

�A bundle combines strands into a partial ordering
• Nodes are ordered by internal strand order
• “Send message” nodes of one strand are matched up 

with “receive message” nodes of another strand

�Infinitely many possible bundles for any given set 
of strands
• No bound on the number of times any given attacker 

strand may be used

�Each bundle corresponds to a particular execution 
trace of the protocol
• Conceptually similar to a Murϕ trace

NSPK Attack Bundle

+{n,A}ke

-{n,r}ka

+{r}ke

+{n,r}ka

ke
-1

{n,A}

kb

{n,A}kb

-{r}kb

Parametric Strands

�Use a variable for every term whose value is 
not known to recipient in advance

+ {n,A}pk(B)

Parametric “A” strand

- {n,r}pk(A)

+ {r}pk(B)

Parametric “B” strand

+ {n,A}pk(X)

+ {Z}pk(X)

- {n,Z}pk(A)

- {Y,A}pk(B)

+ {Y,r}pk(A)

- {r}pk(B)

-“Talk to B” -“Talk to X” +“Talk to B”

- {n,A}pk(B)

+ {n,r}pk(A)

- {r}pk(B)

+“Talk to B”

Properties of Parametric Strands

�Variables are untyped
• Attacker may substitute a nonce for a key, an encrypted 

term for a nonce, etc.
• More flexible; can discover more attacks

�Compound terms may be used as symmetric keys
• Useful for modeling key establishment protocols

– Keys constructed by exchanging and hashing random numbers 

• Public keys constructed with pk(A)

�Free term algebra
• Simple, but cannot model some protocols
• No explicit decryption, no cryptographic properties
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Attack Scenario

�Partial bundle corresponding to attack trace
• By contrast, in Murϕ need to specify attack state
• Assume that the attacker will intercept all messages

+ {n,A}pk(X)

+ {Z}pk(X)

- {n,Z}pk(A)

- {Y,A}pk(B)

+ {Y,r}pk(A)

- {r}pk(B)

-“Talk to X” +“Talk to B”
Is there a way to
insert attacker strands
here so that attacker
learns secret r in the
resulting bundle?

secret

Attack Scenario Generation

�Choose a finite number of strands
�Try all combinations respecting partial order 

imposed by individual strands
• If node L appears after node K in the same strand, 

then L must appear after K in the combination bundle
• Two strands of size m & n ⇒ choose(m+n,n) variants 

�Optimization to reduce number of variants
• The order of “send message” nodes doesn’t matter: 

attacker will intercept all sent messages anyway
• If this is the only difference between two combinations, 

throw one of them away

B→E “Talk to B”
A←E “Talk to X”
A→E {n,A}pk(X)

B←E {A,Y}pk(B)
B→E {Y,r}pk(A)

A←E {n,Z}pk(A)
A→E {Z}pk(X)

←E r

Attack Scenario: Example

A← “Talk to X”
A→ {n,A}pk(X)
A← {n,Z}pk(A)
A→ {Z}pk(X)

A’s role B’s role

B→ “Talk to B”
B← {A,Y}pk(B)
B→ {Y,r}pk(A)
B← {r}pk(B)

Try all possible ways
to plug attacker in the
middle, for example:

� This is a symbolic attack trace
• Variables are uninstantiated

� It may or may not correspond 
to a concrete trace

�Attack modeled as a symbolic trace
• Sequence of protocol messages with variables
• Represents a successful attack

– For example, attacker learns secret in the end

• Adequate for secrecy, authentication, fairness

�Equivalent to a sequence of symbolic constraints

�This constraint is satisfiable  if and only if
there exists substitution σ such that attacker can 
derive  mσ from t1σ, …, tnσ

Symbolic Analysis Problem

m from t1, …, tn
Can the attacker learn message
m from terms t1, …, tn?

From Protocols to Constraints

Formal specification of protocol roles

Choose an interleaving corresponding to an attack

Sequence of symbolic constraints 

contains variables & may not
have a feasible instantiation

Constraint solving procedure 

Choose finite number of role instances

satisfiable ⇔⇔⇔⇔ there exists
a feasible instantiation

Constraint Generation

�For each message attacker sends in the attack 
trace, create symbolic constraint mi from Ti
• mi is the message attacker needs to send
• Ti is set of messages previously observed by attacker
• mi,Ti may contain variables

�Attack is feasible if and only if
all constraints are satisfiable simultaneously
• There exists a substitution σ such that ∀∀∀∀i attacker can 

derive miσ from Tiσ using Dolev-Yao rules
• Variables must be instantiated consistently in all terms
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Constraint Generation: Example

Symbolic ConstraintsAttack Trace

from T0  (attacker’s initial knowledge)

{A,Y}pk(B) from T0, {n,A}pk(X)

{n,Z}pk(A) from T0, {n,A}pk(X), {Y,r}pk(A)

r from T0, {n,A}pk(X),
{Y,r}pk(A), {Z}pk(X)

“Talk to X”
B→E “Talk to B”
A←E “Talk to X”
A→E {n,A}pk(X)
B←E {A,Y}pk(B)
B→E {Y,r}pk(A)
A←E {n,Z}pk(A)
A→E {Z}pk(X)

←E r

Initial
constraint sequence

No rule is
applicable

• • • • • •

Nondeterministically apply special transformation
rules to first  m from T where m is not a variable

var1 from T1
•  •  •

varN from TN

If reduction tree has at least
one such sequence as a leaf,
there is a solution, and
attack scenario is feasible

or

Solving Constraint Sequence

SRI Constraint Solver

�Easy protocol specification
• Specify only protocol rules and correctness condition
• No explicit intruder rules!

�Fully automated protocol analysis 
• Generates all possible attack scenarios
• Converts scenario into a constraint solving problem
• Automatically solves the constraint sequence

�Fast implementation
• Three-page program in standard Prolog (SWI, XSB, etc.)

http://www.csl.sri.com/users/millen/capsl/constraints.html

A Tiny Bit of Prolog (I)

�Atoms
• a, foo_bar, 23, 'any.string'

�Variables
• A, Foo, _G456

�Terms
• f(N), [a,B], N+1

A Tiny Bit of Prolog (II)

�Clauses define terms as relations or 
predicates
• factorial(1,1). Fact, true as given

• factorial(N,M) :- …is true if…

N>1, condition for this case

N1 is N-1, "is" to do arithmetic

factorial(N1,M1),    recursive call to find (N-1)!

M is N*M1. M = N! = N(N-1)!

Using Prolog

�Put definitions in a text file …/factdef or  …\factdef.pl

�Start Prolog swipl, pl   or  plwin.exe
?- Prolog prompt

�Load definitions file
?- reconsult(factdef). consult(factdef) in SWI-Prolog
?- [factdef]. Both UNIX and Windows
?- ['examples/factdef']. subdirectory, need quotes

�Execute query
?- factorial(3,M). Start search for true instance
M=6 Prolog responds
Yes
?- halt. Quit Protocol session.
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Defining a Protocol: Terms

�Constants
• a, b, e, na, k, … e is the name of the attacker

�Variables
• A, M, … by convention, names capitalized

�Compound terms
• [A,B,C] n-ary concatenation, for all n > 1

• A+K symmetric encryption

• A*pk(B) public-key encryption

• sha(X) hash function

• f(X,Y)                          new function unknown to attacker

Specifying Protocol Roles

strand(roleA,A,B,Na,Nb,[
send([A,Na]*pk(B)),
recv([Na,Nb]*pk(A)),
send(Nb*pk(B))

]).

strand(roleB,A,B,Na,Nb,[
recv([A,Na]*pk(B)),
send([Na,Nb]*pk(A)),
recv(Nb*pk(B))

]).

A → B: {A,Na}pk(B)
B → A: {Na,Nb}pk(A)
A → B: {Nb}pk(B)

Name of the role
Parameters of the role

Sending and receiving messages
(just like in Murϕ)

� No need to specify rules for the intruder
� No need to check that messages have correct format

Specifying Secrecy Condition

�Special secrecy test strand

�When the attacker has learned the secret, 
he’ll pass it to this strand to “announce” 
that the attack has succeeded

strand(secrecytest,X,[recv(X),send(stop)]).

Forces analysis to stop as soon 
as this strand is executed

Choosing Number of Sessions 

nspk0([Sa,Sb1,Sb2]) :-
strand(roleA,a,B1,na,Nb,Sa),
strand(roleB,a,b, Na1,nb1,Sb1),
strand(roleB,A3,b,Na2,nb2,Sb2).

�Choose number of instances for each role
• For example, one sender and two recipients

�In each instance, use different constants to 
instantiate nonces and keys created by that role

Each nonce modeled by a separate constant1 instance of role A,
2 instances of role B

Each instance has its own name

Verifying Secrecy

�Add secrecy test strand to the bundle

�This bundle is solvable if and only if the attacker 
can learn secret nb1 and pass it to test strand

�Run the constraint solver to find out
:- nspk0(B),search(B,[]).

�This is it!  Will print the attack if there is one.

nspk0([Sa,Sb1,Sb2,St]) :-
strand(roleA,a,B1,na,Nb,Sa),
strand(roleB,A2,b,Na1,nb1,Sb1),
strand(roleB,A3,b,Na2,nb2,Sb2),
strand(secrecytest,nb1,St).

Specifying Authentication Condition

�What is authentication?
• If B completes the protocol successfully, then there is or 

was an instance of A that agrees with B on certain 
values (each other’s identity, some key, some nonce)

�Use a special authentication message
send(roleA(a,b,nb))

“A believes he is talking to B and B’s nonce is nb”

�Attack succeeds if B completes protocol, but 
A’s doesn’t send authentication message
• B thinks he is talking to A, but not vice versa
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NSPK Strands for Authentication

strand(roleA,A,B,Na,Nb,[
send([A,Na]*pk(B)),
recv([Na,Nb]*pk(A)),
send(roleA(A,B,Nb)),
send(Nb*pk(B))

]).

strand(roleB,A,B,Na,Nb,[
recv([A,Na]*pk(B)),
send([Na,Nb]*pk(A)),
recv(Nb*pk(B)),
send(roleB(A,B,Na))

]).

A announces who he thinks
he is talking to

B announces who he thinks
he is talking to

Verifying Authentication

�Test for presence of authentication message

�This bundle is solvable if and only if the attacker 
can cause roleB(a,b,na) to appear in a trace that 
does not contain roleA(a,b,nb)
• Convince B that he is talking A when A does not think 

he is talking to B.

nspk0([Sa,Sb,St],roleA(a,b,nb)) :-
strand(roleA,a,B,na,Nb,Sa),
strand(roleB,a,b,Na,nb,Sb),
strand(secrecytest,roleB(a,b,na),St).

Only look at bundles where
this message doesn’t occur

Symbolic Analysis in a Nutshell

Symbolic
constraints for

each trace

Participant 
roles

Informal 
protocol 

description

If constraints are satisfied,
then there is an attack

Automated
constraint solving

procedure

All possible
attack traces

!

automated

automated


