Security in Process Calculi

Vitaly Shmatikov

Pi Calculus

[Milner et al.]

@ Fundamental language for concurrent systems
¢ High-level mathematical model of parallel processes
e The “core” of concurrent programming languages
* By comparison, lambda-calculus is the “core” of
functional programming languages
@ Mobility is a basic primitive
» Basic computational step is the transfer of a
communication link between two processes
« Interconnections between processes change as they
communicate

@ Can be used as a general programming language

Pi Calculus Syntax

®Terms
°e M, N:= x variables } Let u range over

| n names names and variables

@ Processes
o P,Q =il empty process
| G<N> P send term N on channel u
| U(X) .P receive term from channel P and assign to x
| 1P replicate process P
| P | Q run processes P and Q in paralle!

| (V n) P restrict name n to process P

Overview

@ Pi calculus
« Core language for parallel programming
¢ Modeling security via name scoping

@ Applied pi calculus

* Modeling cryptographic primitives with functions
and equational theories

» Equivalence-based notions of security
« A little bit of operational semantics
 Security as testing equivalence

A Little Bit of History

[Milner]

9 1980: Calculus of Communicating Systems (CCS)
91992: Pi Calculus [Milner, Parrow, Walker]

« Ability to pass channel names between processes
€ 1998: Spi Calculus [Abadi, Gordon]

» Adds cryptographic primitives to pi calculus

¢ Security modeled as scoping

» Equivalence-based specification of security properties

» Connection with computational models of cryptography
€2001: Applied Pi Calculus [Abadi, Fournet]

» Generic functions, including crypto primitives

Modeling Secrecy with Scoping

@A sends M to B over secure channel c

M
. channel ¢ .

= &M
= c(x).nil
(ve) (A (M)
is restriction ensures that channel c is

invisible” to any process except A and B
(other processes don't know name c)

Secrecy as Equivalence

— Without (vc), attacker could run
(M) process c(x) and tell the difference
0 between P(M) and P(M’)
= c(x) .nil

(ve) (A (M) |B)

4 P(M) and P(M’) are “equivalent” for any values

of Mand M’
» No attacker can distinguish P(M) and P(M")
@ Different notions of “equivalence”
 Testing equivalence or observational congruence
« Indistinguishability by any probabilistic polynomial-
time Turing machine

Modeling Authentication with Scoping

@A sends M to B over secure channel ¢
€ B announces received value on public channel d

\] \]
. channel ¢ . channel d

(M)
c(x) .d(x)
(ve) (A (M) ‘B)

A Key Establishment Protocol

Cs C

Create new M M
channel Cyg
Send data on Cyg channel d

. A and B have pre-established pairwise keys with server S
@ Model these keys as names of pre-existing communication channels
A creates a new key and sends it to S, who forwards it to B

@ Model this as creation of a new channel name
A sends M to B encrypted with the new key, B outputs M

Send name C,g ‘ Send name C,g
SB

Another Formulation of Secrecy

&)

= c(x).nil

(ve) (A (M) |B)

@ No attacker can learn name n from P(n)
o Let Q be an arbitrary attacker process, and suppose
it runs in parallel with P(n)
e For any process Q in which n does not occur free,
P(n) | Q will never output n

Specifying

Authentication

&M
c(x) .d{x)
= (vc) (A (M) ‘B)

@ For any value of M, if B outputs M on channel d,
then A previously sent M on channel c

Key Establishment in Pi Calculus

Send name C,g ‘ Send name C,g
SB

Create new
channel Cyg

A (M)

Cs C

M . M
Send data on Cyg channel d

(VCABM? <CAB>'§B<M>

- CorlX)_
CSB(X)-X(Y) o
(Veas) (Vegg) (A (M) |B]S)

Applied Pi Calculus

@ 1n pi calculus, channels are the only primitive

@ This is enough to model some forms of security

* Name of a communication channel can be viewed as an
“encryption key” for traffic on that channel
— A process that doesn't know the name can't access the channel
e Channel names can be passed between processes
— Useful for modeling key establishment protocols

@ To simplify protocol specification, applied pi
calculus adds functions to pi calculus
» Crypto primitives modeled by functions and equations

Applied Pi Calculus: Processes

P,Q 1= nil empty process
| CI(N) P send term N on channel u
| u (X) .P receive from channel P and assign to x
| Ip replicate process P
| P | Q run processes P and Q in parallel
| (V n) P restrict name n to process P
| ifM=N conditional
then P else Q

More Equational Theories

@ Public-key encryption

¢ Functions pk,sk generate public/private key pair
pk(x),sk(x) from a random seed x

¢ Functions pdec,penc model encryption and decryption
with equation:

» Can also model “probabilistic” encryption:

@ Hashing
» Unary function hash with no equations
¢ hash(M) models applying a one-way function to term M

Applied Pi Calculus: Terms

Variable
Name

| f(M 1reeer M k) Function application

@ Standard functions
e pair(), encrypt(), hash(), ...
@ Simple type system for terms
e Integer, Key, ChannelInteger), Channel(Key)

Modeling Crypto with Functions

@ Introduce special function symbols to model
cryptographic primitives
@ Equational theory models cryptographic properties
@ Pairing
» Functions pair, first, second with equations:

@ Symmetric-key encryption
¢ Functions symenc, symdec with equation:

Yet More Equational Theories

@ Public-key digital signatures

¢ As before, functions pk,sk generate public/private key
pair pk(x),sk(x) from a random seed x

« Functions sign,verify model signing and verification with
equation:

¢ XOR
* Model self-cancellation property with equation:

» Can also model properties of cyclic redundancy codes:

Dynamically Generated Data

@ Use built-in name generation capability of pi
calculus to model creation of new keys and nonces

‘ (M,s) ‘ M ;
channel ¢ channel d

&((M,s))
c(x).1if second(x)=s
then d(first (x))

Proving Security

9 "Real” protocol
¢ Process-calculus specification of the actual protocol
9 "Ideal” protocol

¢ Achieves the same goal as the real protocol, but is
secure by design

¢ Uses unrealistic mechanisms, e.g., private channels
» Represents the desired behavior of real protocol
@ To prove the real protocol secure, show that no
attacker can tell the difference between the real
protocol and the ideal protocol
 Proof will depend on the model of attacker observations

Example: Authentication

@ Authentication protocol
A>B {i}
Bo>A {i+l}
A—-B “Ok”
@ This protocol is secure if it is indistinguishable from
this “ideal” protocol
A—B {random,},
B—A {random,},
B—A random,, random, on a magic secure channel
A — B “Ok”if numbers on real & magic channels match

Better Protocol with Capabilities

(M,hash(s,M), M
channel ¢ channel d
M and secrecy of s

&((M,hash(s,M)))
= c(x).1f second(x)=
hash (s, first (x))
then d{first (x))
(vs) (A (M) |B)

Example: Challenge-Response

@ Challenge-response protocol
A—>B (i}
Bo>A {i+l}

@ This protocol is secure if it is indistinguishable
from this “ideal” protocol
A—B {random,},
B—A {random,},

Security as Observational Equivalence

@ Need to prove that two processes are
observationally equivalent to the attacker
@ Complexity-theoretic model

¢ Prove that two systems cannot be distinguished by any
probabilistic polynomial-time adversary
[Beaver 91, Goldwasser-Levin ‘90, Micali-Rogaway "91]
@ Abstract process-calculus model
» Cryptography is modeled by abstract functions
 Prove testing equivalence between two processes
» Proofs are easier, but it is nontrivial to show

computational completeness [Abadi-Rogaway ‘00]

Structural Equivalence

P|nil=P
PIQ=QIP
PIQIR) =(PIQ IR
IP=P|IP
(vm) (vn)P = (vn) (vm)P
(vn)nil = nil
(vn)(P | Q) =P | (vn)Q ifnisnot a free name in P
P[M/X] = P[N/X] if M=N in the equational theory

Equivalence in Process Calculus

@ Standard process-calculus notions of
equivalence such as bisimulation are not
adequate for cryptographic protocols
« Different ciphertexts leak no information to the

attacker who does not know the decryption keys

@ (vk)c(symenc(M,k)) and (vk)c{symenc(N,k)
send different messages, but they should be
treated as equivalent when proving security
¢ In each case, a term is encrypted under a fresh key
» No test by the attacker can tell these apart

Advantages and Disadvantages

2

¢ Need to quantify over all possible attacker processes
and all tests they may perform

e There are some helpful proof techniques, but no fully
automated tools and very few decision procedures

@ Testing equivalence is a congruence
¢ Can compose protocols like building blocks
@ Equivalence is the “right” notion of security

¢ Direct connection with definitions of security in
complexity-theoretic cryptography

¢ Contrast this with invariant- and trace-based definitions

Operational Semantics

@®Reduction — is the smallest relation on
closed processes that is closed by
structural equivalence and application of
evaluation contexts such that

aM).P | a(x).Q — P | Q[M/x]
models P sending M to Q on channel a
if M=MthenPelseQ — P
ifM=NthenPelseQ — Q

for any ground M, N s.t. M = N in the equational theory

Testing Equivalence

@ Informally, two processes are equivalent if no
environment can distinguish them

@A test is a process R and channel name w

 Informally, R is the environment and w is the channel
on which the outcome of the test is announced

@A process P passes a test (R,w) if P | R may
produce an output on channel w

e There is an interleaving of P and R that results in R
being able to perform the desired test

@ Two processes are equivalent if they pass the
same tests

Bibliography

@ Robin Milner. “Communication and Concurrency”. Prentice-Hall, 1989.
« Calculus of communicating systems (CCS)
@ Robin Milner. “*Communicating and Mobile Systems: the n-Calculus”.
Cambridge University Press, 1999.
¢ Picalculus
@ Martin Abadi and Andrew Gordon. “A calculus for cryptographic
protocols: the spi-calculus”. Information and Computation 148(1), 1999.
« Spi calculus
4 Martin Abadi and Cedric Fournet. “Mobile values, new names, and
secure communication”. POPL 2001.
« Applied pi calculus
@ Martin Abadi and Phillip Rogaway. “Reconciling two views of
cryptography”. Journal of Cryptology 15(2), 2002.
« On equivalence of complexity-theoretic and process-calculus models

