CS 259

Game-Based Verification of Fair Exchange Protocols

Vitaly Shmatikov

Overview

- Fair exchange protocols
 - Protocols as games
 - Security as presence or absence of certain strategies
- Alternating transition systems
 - Formal model for adversarial protocols
- ◆Alternating-time temporal logic
- Logic for reasoning about alternating transition systems
- Game-based verification of fair exchange
 - Example: Garay-Jakobsson-MacKenzie protocol

Signature₄(contract) Signature₄(contract) ▲ Signature₄(contract) ▲ Signature₄(contract) ● Malicious participant vs. external intruder • Signature₄(contract) ▲ Signature₄(contract)

- ◆ A protocol can be viewed as a game
 - Adversarial behavior (e.g., Alice vs. Bob)
 - Cooperative behavior (e.g., Bob controls communication channel)

Game-Theoretic Model

- Each protocol message is a game move
- Different sets of moves for different participants
- Four possible outcomes (for signature exchange)
 - A has B's signature, B has A's signature
 - A has B's signature, B doesn't have A's signature, etc.
- Honest players follow the protocol
- Dishonest players can make any Dolev-Yao move
 Send any message they can compute
 - Wait instead of responding
- Reason about players' game strategies

Protocol as a Game Tree

- Every possible execution of the protocol is a path in the tree
- Players alternate their moves
 First A sends a message, then B, then A ...
 Adversary "folded" into dishonest player
- Every leaf labeled by an outcome
 (Y,Y) if A has B's signature and B has A's
- (Y,N) if only A has B's signature, etc.
 <u>Natural concept of strategy</u>
 - A has a strategy for getting B's signature if, for any move B can make, A has a response move such that the game always terminates in some leaf state labeled (*,...)

Define Properties on Game Trees

Alternating Transition Systems

- Game variant of Kripke structures
 - R. Alur, T. Henzinger, O. Kupferman. "Alternatingtime temporal logic". FOCS 1997.
- Start by defining state space of the protocol
 - Π is a set of propositions
 - Σ is a set of players
 - Q is a set of states
 - $Q_0 \subseteq Q$ is a set of initial states
 - $\pi\colon Q\to\!\!2^{\Pi}$ maps each state to the set of propositions that are true in the state
- So far, this is very similar to Murφ

Transition Function

- ♦ δ: Q×Σ →2² maps a state and a player to a nonempty set of choices, where each choice is a set of possible next states
 - When the system is in state q, each player chooses a set $Q_a{\in}\,\delta(q,a)$
 - The next state is the intersection of choices made by all players $\bigcap_{a\in\Sigma} \delta(q,a)$
 - The transition function must be defined in such a way that the intersection contains a unique state
- Informally, a player chooses a set of possible next states, then his opponents choose one of them

Example: Computing Next State $S = \{Alice, Bob\}$ $p \land q$ $p \land q$

Alternating-Time Temporal Logic

• Propositions $p \in \Pi$

- $\phi \text{ or } \phi_1 \lor \phi_2$ where ϕ, ϕ_1, ϕ_2 are ATL formulas
- $\langle \langle A \rangle \rangle \bigcirc \varphi_{1} \langle \langle A \rangle \rangle \Box \varphi_{1} \langle \langle A \rangle \rangle \varphi_{1} U \varphi_{2}$ where $A \subseteq \Sigma$ is a set
- of players, ϕ , ϕ_1 , ϕ_2 are ATL formulas
- These formulas express the ability of coalition A to achieve a certain outcome
- ○, □, U are standard temporal operators (similar to what we saw in PCTL)
- Define $\langle\langle A \rangle\rangle$ $\Leftrightarrow \phi$ as $\langle\langle A \rangle\rangle$ true U ϕ

Strategies in ATL

- ♦A strategy for a player $a \in \Sigma$ is a mapping $f_a: Q^+ \rightarrow 2^Q$ such that for all prefixes $\lambda \in Q^*$ and all states $q \in Q$, $f_a(\lambda \cdot q) \in \delta(q, a)$
 - For each player, strategy maps any sequence of states to a set of possible next states
- Informally, the strategy tells the player in each state what to do next
 - Note that the player cannot choose the next state. He can only choose a set of possible next states, and opponents will choose one of them as the next state.

Temporal ATL Formulas (I)

- $\langle\langle A \rangle\rangle \odot \phi$ iff there exists a set F_a of strategies, one for each player in A, such that for all future executions $\lambda \in out(q, F_a) \phi$ holds in first state $\lambda[1]$
 - Here $out(q, F_a)$ is the set of all future executions assuming the players follow the strategies prescribed by $F_{a'}$, i.e., $\lambda = q_0 q_1 q_2 \dots \in out(q, F_a)$ if $q_0 = q$ and $\forall i q_{i+1} \in \bigcap_{a \in A} f_a(\lambda[0, i])$
- Informally, $\langle\langle A \rangle\rangle \bigcirc \phi$ holds if coalition A has a strategy such that ϕ always holds in the next state

Temporal ATL Formulas (II)

- $\begin{aligned} &\langle\langle A\rangle\rangle \Box \phi \text{ iff there exists a set } F_a \text{ of strategies, one} \\ &\text{ for each player in } A, \text{ such that for all future} \\ &\text{ executions } \lambda \in \text{out}(q,F_a) \phi \text{ holds in all states} \end{aligned}$
 - Informally, $\langle\langle A \rangle \rangle \Box \phi$ holds if coalition A has a strategy such that ϕ holds in every execution state
- $\begin{aligned} &\langle\langle A\rangle\rangle & \Diamond \phi \text{ iff there exists a set } F_a \text{ of strategies, one} \\ &\text{for each player in } A, \text{ such that for all future} \\ &\text{executions } \lambda \in \text{out}(q, F_a) \phi \text{ eventually holds in} \\ &\text{some state} \end{aligned}$
 - Informally, (〈A〉) ◇ φ holds if coalition A has a strategy such that φ is true at some point in every execution

Protocol Description Language

- Guarded command language
 - Very similar to PRISM input language (proposed by the same people)
- **Each action described as** [] guard \rightarrow command
 - guard is a boolean predicate over state variables
 - command is an update predicate, same as in PRISM
 Simple example:
 - []SigM1B < -SendM2 < -StopB -> SendMrB1':=true;

Role of Trusted Third Party

- T can convert PCS to regular signature
- Resolve the protocol, when requested by either player
 T can issue an abort token
- Promise not to resolve protocol in future
- ◆T acts only when requested
 - Decides whether to abort or resolve on a first-come-first-served basis
 - Only gets involved if requested by A or B

Resolve Subprotocol

Timeliness + Fairness in ATL

 $\langle\langle A_h \rangle\rangle$ \diamond (stop_A \land (¬contract_B \rightarrow \neg $\langle\langle B, Com \rangle\rangle$ \diamond contract_A))

Honest Alice always has a strategy to reach a state

 \sim in which she can stop the protocol and ight)

if she does not have Bob's contract \checkmark

then Bob does not have a strategy to obtain Alice's signature even if he controls communication channels

Modeling TTP and Communication

Trusted third party is impartial

- This is modeled by defining a unique TTP strategy
- TTP has no choice: in every state, the next action is uniquely determined by its only strategy
- Can model protocol under different assumptions about communication channels
 - Unreliable: infinite delay possible, order not guaranteed – Add "idle" action to the channel state machine
 - Resilient: finite delays, order not guaranteed
 Add "idle" action + special constraints to ensure that even message is eventually delivered (rule out infinite delay)
 - Operational: immediate transmission

MOCHA Model Checker

- Model checker specifically designed for verifying alternating transition systems
 - System behavior specified as guarded commands

 Essentially the same as PRISM input, except that transitions are nondeterministic (as in in Murφ), not probabilistic
- Property specified as ATL formula
- Slang scripting language
 - Makes writing protocol specifications easier
- Try online implementation!
- http://www-cad.eecs.berkeley.edu/~mocha/trial/

Bibliography

- R. Alur, T. Henzinger, O. Kupferman. "Alternating-time temporal logic". FOCS '97.
- Introduces alternating transition systems and ATL logic R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, S. Tasiran. "MOCHA: modularity in model checking". CAV '98.
 Introduces MOCHA model checker for alternating transition systems

- http://www.cis.upen.edu/~mocha/
 MOCHA web page
 S. Kremer and J.-F. Raskin. "A game-based verification of non-repudiation and fair exchange protocols". J. of Computer Security 11(3), 2003.
- Detailed study of fair exchange protocols using ATL and MOCHA
 S. Kremer and J.-F. Raskin. "Game-based analysis of abuse-free contract signing". CSFW '03.
 Model checking abuse-freeness with MOCHA