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Probabilistic Polynomial-Time 
Process Calculus for Security 

Protocol Analysis 

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague
P. Lincoln, P. Mateus, M. Mitchell

Standard analysis methods

�Finite-state analysis
�Dolev-Yao model

• Symbolic search of protocol runs  
• Proofs of correctness in formal logic

�Consider probability and complexity
• More realistic intruder model
• Interaction between protocol and 

cryptography
Harder

Easier

Protocol analysis spectrum
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IKE subprotocol from IPSEC

A,  (ga mod p)

B, (gb mod p)

Result: A and B share secret gab mod p

Analysis involves probability, modular exponentiation, digital 
signatures, communication networks, …

A B
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m2
, signB(m1,m2)

signA(m1,m2)

Equivalence-based specification

�Real protocol
• The protocol we want to use
• Expressed precisely in some formalism

�Idealized protocol
• May use unrealistic mechanisms (e.g., private channels)
• Defines the behavior we want from real protocol
• Expressed precisely in same formalism

�Specification
• Real protocol indistinguishable from ideal protocol
• Beaver ‘91, Goldwasser-Levin ‘90,  Micali-Rogaway ’91
• Depends on some characterization of observability

�Achieves compositionality

Compositionality      (intuition)

�Crypto primitives
• Ciphertext indistinguishable from noise
⇒ encryption secure in all protocols

�Protocols
• Protocol indistinguishable from ideal key 

distribution
⇒ protocol secure in all systems that 
rely on secure key distributions
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Compositionality 

�Intuitively, if: 
• Q securely realizes I ,  
• R securely realizes J, 
• R, J use I as a component, 

�then 
R{Q/I} securely realizes J

� Fits well with process calculus
because  ≈ is  a congruence
• Q ≈ I   ⇒ C[Q] ≈ C[I] 
• contexts constructed from R, J, simulators

Language Approach                 

�Write protocol in process calculus
• Dolev-Yao model

�Express security using observational equivalence
• Standard relation from programming language theory

P ≈ Q iff  for all contexts C[ ], same 
observations about C[P] and C[Q]

• Inherently compositional
• Context (environment) represents adversary

�Use proof rules for ≈ to prove security
• Protocol is secure if no adversary can distinguish it 

from some idealized version of the protocol
Great general idea; application is complicated 

Roscoe ‘95, Schneider ‘96,
Abadi-Gordon’97

Aspect of compositionality

�Property of observational equiv

A ≈ B     C ≈ D

A|C  ≈ B|D

similarly for other process forms

The proof is easy

�Recall definition
P ≈ Q iff  for all contexts C[ ], same 

observations about C[P] and C[Q]
�Assume

• A ≈ B  ⇒ ∀C[ ], C[A] ∼ C[B]
�Therefore 

• For any C[ ], let C’[ • ] = C[ • | D]
• By assumption, C’[A] ∼ C’[B]
• Which means that A|D  ≈ B|D

�By similar reasoning
• Can show A|C  ≈ A|D 
• Therefore A|C  ≈ A|D ≈ B|D

A ≈ B     C ≈ D
A|C  ≈ B|D

Probabilistic Poly-time Analysis

�Add probability, complexity
�Probabilistic polynomial-time process calc

• Protocols use probabilistic primitives
– Key generation, nonce, probabilistic encryption, ...

• Adversary may be probabilistic
�Express protocol and spec in calculus
�Security using observational equivalence

• Use probabilistic form of process equivalence

Pseudo-random number generators

�Sequence generated from random seed
Pn: let b = nk-bit sequence generated from n random bits

in  PUBLIC 〈b〉 end          
�Truly random sequence

Qn: let b = sequence of nk random bits
in  PUBLIC 〈b〉 end        

�P is crypto strong pseudo-random number 
generator
P ≈ Q
Equivalence is asymptotic in security parameter n
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Secrecy for Challenge-Response

�Protocol  P
A → B:   { i } K
B → A:   { f(i) } K                                                 

�“Obviously’’ secret protocol   Q
A → B:   { random_number } K
B → A:   { random_number } K

Secrecy for Challenge-Response

�Protocol  P
A → B:   { i } K
B → A:   { f(i) } K                                                 

�“Obviously’’ secret protocol   Q
A → B:   { random_number } K
B → A:   { random_number } K

�Analysis:   P ≈ Q reduces to crypto condition 
related to non-malleability   [Dolev, Dwork, Naor]

– Fails for “plain old” RSA if  f(i) = 2i  

Non-malleability:
Given only a ciphertext, 
it is difficult to generate

a different ciphertext so that
the respective plaintexts

are related

Security of encryption schemes

�Passive adversary
• Semantic security
• Indistinguishability

�Chosen ciphertext attacks (CCA1)
• Adversary can ask for decryption before 

receiving a challenge ciphertext
�Chosen ciphertext attacks (CCA2)

• Adversary can ask for decryption before 
and after receiving a challenge 
ciphertext

Passive Adversary

Challenger Attacker

m0, m1

E(mi)

guess 0 or 1

Chosen ciphertext CCA1

Challenger Attacker
m0, m1

E(mi)
guess 0 or 1

c

D(c)

Chosen ciphertext CCA2

Challenger Attacker

m0, m1

E(mi)

guess 0 or 1

c

D(c)

c ≠ E(mj)

D(c)
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Specification with Authentication

�Protocol  P
A → B:   { random i } K
B → A:   { f(i) } K

A → B:   “OK” if  f(i) received 

�“Obviously’’ authenticating protocol   Q
A → B:   { random i } K

B → A:   { random j } K    i , j                 

A → B:   “OK” if  private i, j match public msgs

public channel private channel

public channel private channel

Methodology

� Define general system
• Process calculus
• Probabilistic semantics
• Asymptotic observational equivalence

� Apply to protocols
• Protocols have specific form
• “Attacker” is context of specific form 

Nondeterminism vs encryption

�Alice encrypts msg and sends to Bob
A → B:   { msg } K

�Adversary uses nondeterminism
Process E0 c〈0〉 | c〈0〉 | … | c〈0〉
Process E1 c〈1〉 | c〈1〉 | … | c〈1〉
Process E 

c(b1).c(b2)...c(bn).decrypt(b1b2...bn, msg)

In reality,  at most 2-n chance to guess n-bit key

Related work

� Canetti;    B. Pfitzmann, Waidner, Backes
• Interactive Turing machines
• General framework for crypto properties
• Protocol simulates an ideal setting
• Universally composable security

� Abadi, Rogaway, Jürjens;  
Herzog;   Warinschi 
• Toward transfer principles between formal 

Dolev-Yao model and computational model 

Technical Challenges

�Language for prob. poly-time functions
• Extend work of Cobham, Bellantoni, Cook, 

Hofmann
�Replace nondeterminism with probability

• Otherwise adversary is too strong ...
�Define probabilistic equivalence

• Related to poly-time statistical tests ...
�Proof rules for probabilistic equivalence

• Use the proof system to derive protocol 
properties

Syntax

�Bounded π-calculus with integer terms
P :: =  0
|       cq(|n|) 〈T〉 send up to q(|n|) bits
|       cq(|n|) (x). P          receive
|       υcq(|n|) . P            private channel
|       [T=T] P             test
|       P | P                  parallel composition
|       ! q(|n|) . P              bounded replication

Terms may contain symbol n; channel width 
and replication bounded by poly in |n|

Expressions have size 
poly in |n|
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Probabilistic Semantics

�Basic idea
• Alternate between terms and processes

– Probabilistic evaluation of terms (incl. rand)
– Probabilistic scheduling of parallel processes

�Two evaluation phases
• Outer term evaluation

– Evaluate all exposed terms,  evaluate tests
• Communication

– Match send and receive
– Probabilistic if multiple send-receive pairs

Scheduling

�Outer term evaluation
• Evaluate all exposed terms in parallel
• Multiply probabilities

�Communication
• E(P) = set of eligible subprocesses
• S(P) = set of schedulable pairs
• Prioritize – private communication first
• Probabilistic poly-time computable 

scheduler that makes progress

Example

�Process
• c〈rand+1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈x+1〉

�Outer evaluation 
• c〈1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈x+1〉
• c〈2〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈x+1〉

�Communication
• c〈1〉 | c(x).d〈x+1〉 | d〈2〉 | d(y). e〈x+1〉

Each 
prob ½

Choose according to probabilistic scheduler

Complexity results

�Polynomial time
• For each closed process expression  P, 

there is a polynomial  q(x)  such that
– For all n
– For all probabilistic polynomial-time 

schedulers 
eval of  P  halts in time  q(|n|)   

Complexity: Intuition

�Bound on number of communications
• Count total number of inputs, multiplying 

by q(|n|) to account for   ! q(|n|) . P 
�Bound on term evaluation

• Closed T evaluated in time qT(|n|)
�Bound on time for each comm step

• Example:   c〈m〉 | c(x).P  → [m/x]P 
• Substitution bounded by orig length of P 

– Size of number m is bounded
– Previous steps preserve # occurr of x in P

How to define process equivalence?
�Intuition

• | Prob{ C[P] → “yes” } - Prob{ C[Q] → “yes” } | < ε
�Difficulty

• How do we choose  ε?
– Less than 1/2, 1/4, … ?      (not equiv relation)
– Vanishingly small ? As a function of what?

�Solution
• Use security parameter

– Protocol is family { Pn } n>0 indexed by key length 
• Asymptotic form of process equivalence

Problem:
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Probabilistic Observational Equiv

�Asymptotic equivalence within f
Process, context  families { Pn } n>0 { Qn } n>0   { Cn } n>0

P ≈f Q if  ∀ contexts C[ ]. ∀ obs v. ∃n0 . ∀ n> n0 .
| Prob[Cn[Pn] → v] - Prob[Cn[Qn] → v] | < f(n)

�Asymptotically polynomially indistinguishable
P ≈ Q if P ≈f Q  for every polynomial f(n) = 1/p(n)

Final def’n gives robust equivalence relation

One way to get equivalences

�Labeled transition system
• Evaluate process is a “maximally benevolent context”
• Allows process read any input on a public channel or send 

output even if no matching input exists in process
• Label with numbers “resembling probabilities”

�Bisimulation relation
• If P  Q and P       P’, then exists Q’

with Q        Q’ and P’     Q’ , and vice versa
�Strong form of prob equivalence

• But enough to get started … 
[van Glabbeek – Smolka – Steffen]

r~
~r

Provable equivalences

• Assume  scheduler is stable under 
bisimulation

� P ~ Q   ⇒ C[P] ~ C[Q]
� P ~ Q   ⇒ P ≈ Q 
� P | (Q | R) ≈ (P | Q) | R
� P | Q ≈ Q | P
� P | 0  ≈ P

Provable equivalences

� P ≈ υ c. ( c<T> | c(x).P)         x ∉FV(P)  
� P{a/x} ≈ υ c. ( c<a> | c(x).P) 

if bandwidth of c large enough
� P ≈ 0   if no public channels in P
� P ≈ Q    ⇒ P{d/c} ≈ Q{d/c}

c , d same bandwidth,  d fresh   
� c<T> ≈ c<T’> 

if Prob[T → a]  = Prob[T’ → a]    all a

Connections with modern crypto

�Cryptosystem consists of three parts
• Key generation
• Encryption (often probabilistic) 
• Decryption

�Many forms of security
• Semantic security, non-malleability, chosen-

ciphertext security, …  
• Formal derivation of semantic security 

of  ElGamal from DDH and vice versa
�Common conditions use prob. games

Decision Diffie-Hellman   DDH

�Standard crypto benchmark
� n security parameter (e.g., key length)

Gn cyclic group of prime order  p, 
length of p roughly n ,                  

g generator of Gn 
� For random  a, b, c ∈ {0, . . . , p-1}

〈 ga , gb , gab 〉 ≈ 〈 ga , gb , gc 〉
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ElGamal cryptosystem

�n security parameter (e.g., key length)
Gn cyclic group of prime order  p , 

length of p roughly n ,  g  generator of  Gn 
�Keys 

• public 〈 g , y 〉 ,  private 〈 g , x 〉 s.t.  y = gx 

�Encryption of  m ∈ Gn
• for random  k ∈ {0, . . . , p-1} outputs   〈 gk , m yk 〉

�Decryption of  〈 v, w 〉 is w (vx)-1

• For v = gk ,  w = m yk get
w (vx)-1 =  m yk / gkx   =  m gxk / gkx   =  m  

Semantic security

�Known equivalent:  
indistinguishability of encryptions
• adversary can’t tell from the traffic which of 

the two chosen messages has been encrypted
• ElGamal: 

〈 1n , gk , m yk 〉 ≈ 〈 1n , gk’ , m’ yk’ 〉

� In case of ElGamal known to be
equivalent to DDH

�Formally derivable using the proof rules  

Current State of Project

�Compositional framework for protocol analysis 
• Determine crypto requirements of protocols 
• Precise definition of crypto primitives

�Probabilistic ptime language 
�Process framework

• Replace nondeterminism with rand
• Equivalence based on ptime statistical tests

�Methods for establishing equivalence
• Probabilistic simulation technique   

�Emulation and compositionality
�Examples:  

Decision Diffie-Hellman, ElGamal, Bellare-Rogaway,    
Oblivious Transfer, Computational Zero Knowledge, …


