Greg Nelson

Duc Pham

CS259 – Stanford University

March 20, 2006

Security Analysis of SIP

I. SIP Overview

SIP is defined and described in RFC 3261 (http://www.ietf.org/rfc/rfc3261.txt) as an application-layer signaling control protocol for initiating a communication session among users. It can be used to set up any kind of session, but it is best to think of them as VoIP phone calls. It includes registering device addresses (what phone or device to ring when someone calls you), inviting into a session (calling), accepting a session (answering), and disconnecting a session (hanging up).
Acronyms
UA: a user agent (representing an end user’s device).
UAC: a user agent client (caller).
UAS: a user agent server (callee). The roles of UAC and UAS are logical entities and they last for only the duration of a transaction. This means if a UA (makes a request, it is a UAC, and if it receives a request, it will be UAS.

SS: in the scope of this paper, SS refers to any middle server such as a registrar server (which accepts REGISTER requests and handles local services in its domain), or a proxy server (which acts as both a UAC and a UAS for generating requests/responses on the behalf of other UAs).

SIP can be described as the following: both Alice and Bob register to a registrar server for location identification purposes. If Alice wants to initiate a session with Bob, she will send an INVITE message to her proxy server. This proxy server will act on Alice’s behalf and search for Bob’s proxy server. It will then send the INVITE message to Bob’s proxy. Bob’s proxy server will then look up Bob’s current device(s) and send an INVITE message to Bob. If Bob accepts the INVITE, then he will send back an OK message, which will propagate back to ALICE through the proxies. Alice then sends an ACK directly to Bob and a direct media session takes place after that. To disconnect the session, Alice or Bob will send a BYE message and the other will reply with an OK message.

Illustration

 atlanta.com . . . biloxi.com

 . proxy proxy .

 . .

 Alice's . Bob's

 softphone SIP Phone

 |
 (Registrar local services)

 |

 | REGISTER
|

 |
REGISTER |

 |--------------->|

 |<---------------|

 | OK 200
|

 | OK 200 |

 | <--------------|

 |--------------->|

 | | | |

 | INVITE F1 | | |

 |--------------->| INVITE F2 | |

 | 100 Trying F3 |--------------->| INVITE F4 |

 |<---------------| 100 Trying F5 |--------------->|

 | |<-------------- | 180 Ringing F6 |

 | | 180 Ringing F7 |<---------------|

 | 180 Ringing F8 |<---------------| 200 OK F9 |

 |<---------------| 200 OK F10 |<---------------|

 | 200 OK F11 |<---------------| |

 |<---------------| | |

 | ACK F12 |

 |--->|

 | Media Session |

 |<==>|

 | BYE F13 |

 |<---|

 | 200 OK F14 |

 |--->|

 | |

For our analysis, we have simplified the message formats:

REGISTER <Domain> <To> <From> <Contact(device)>

OK <To> <From>

INVITE <To> <From><Via><Content>

BYE <To> <From>

ACK <To> <From>
Vulnerabilities

The basic protocol has many vulnerabilities, including:
1. Proxy Impersonation: an attacker can impersonate a proxy server.

2. Message Tampering: a man-in-the-middle can intercept and change messages sent between entities.

3. Session Teardown: an attacker can send a spoofed BYE message to either party.

4. Denial of Service: an attacker can disrupt service by making phony requests or by flooding servers or UAs with REGISTER or INVITE messages.

5. Registration Hijacking: an attacker can register his device in place of another user’s device.

II. Objectives

We will use AVISPA to model the basic protocol without any security mechanisms. Then we will add point-to-point TLS to the model. Then we will model the registration process and look for registration hijack attacks and registrar impersonation attacks. Then we will model a full-blown interdomain session setup and look for message tampering and proxy impersonation attacks. We will then discuss other vulnerabilities that we weren’t able to model.
III. The Model

We used AVISPA model to analyze the security vulnerabilities of SIP. The following is a brief description of our implementation. We started with the basic protocol as described above and then added security layers on top of it. Due to time constraints, we will demonstrate message secrecy with TLS only. S/MIME will be discussed in the next section. We simulated TLS with symmetric key encryption. This is without loss of generality since we assume that a TLS session was already established.

u2p_no_sec.hlspl: In this file we implement registration without TLS.
This shows that an attacker could impersonate a server or a UA (registration hijack):
UAC -> SS: sipregister.Ns

SS -> UAC: sipok

u2p_sym_key.hlspl: In this file we implement registration with TLS. This will show the content is secure, thus this prevents registration hijacking or server impersonation. Ns represents the message content.
UAC -> SS: sipregister.Ns(Ku)

SS -> UAC: sipok(Ku)

u2u.hlspl: In this file we implement interdomain requests with TLS.

UAC -> SS: sipinvite.UAC.UAS.Ni' (ksu)

SS -> UAS: sipinvite.UAC.UAS.SS.Ni' (kus)

UAS -> SS: sipok.UAS.UAC.SS.No' (kus)

SS -> UAC: sipok.UAS.UAC.No' (ksu)

UAC -> UAS: sipack.UAC.UAS.Na' (kuu)

UAC -> UAS: sipbye.UAS.UAC (kuu)

UAS -> UAC: sipok.UAC.UAS

If the server is trusted, the message content will be secure. However, if the server is an intruder, then the message content could be tempered with.

IV. Discussion

Message Secrecy

The model simulation shows that even with point-to-point TLS, message secrecy and integrity cannot be guaranteed if the proxies themselves cannot be fully trusted. Therefore some other mechanism that can ensure end-to-end secrecy is called for, such as S/MIME. Mechanisms that rely on the existence of end-user certificates (like S/MIME) are limited because there are no prevalent certificate authorities for end-users. We may use self-signed certificates, but this is susceptible to a man-in-the-middle attack during the initial key exchange, where the attacker exchanges his key with each user, but each user thinks they have the key of the other user. In this case, key fingerprints can be used, as in SSH. In the case of VoIP, the users could verify each other’s keys by reading off the key fingerprints. An attacker would have to emulate both users’ voices in order to successfully pull off an attack.
Authentication

a) Server Authentication:

If a UAC wishes to register their device with a registrar, they must establish a TLS connection with the server in order to authenticate the server.
b) User Authentication:

If the registrar establishes TLS connections with a UAC, it then receives the REGISTER request from the UAC. The server should challenge the user with an HTTP digest authentication scheme such as

Sending the 401 Proxy Authentication Required message. The UAC then submits a username and password to the server. The user must have a pre-existing relationship with the server.

c) Analysis:

Our models have proved that the above scheme works well for the registration interaction between a UAC and Server. However, such a scheme will not work as well for a regular, interdomain session. We can see from our communication model that the UAC can’t distinguish a valid UAS from an intruder because, to UAC, 2 scenarios UAC <-> SS <-> UAS and UAC <-> SS <-> I <-> UAS look the same. Basically, it is the server’s responsibility to authenticate the UAC and the UAC has no idea who it really talks to. This model will require UACs to trust that the intermediate server’s are mutually authenticated. If we look at the problem in a larger scenario: UAC <-> SS <-> SS<-> UAS, then both servers have to trust each other with their respective UA identities. To overcome this dependency, once the UAs are directly communicating, they have to challenge the identity of the other party by deploying a scheme such as voice recognition or some other signature verification technique.
Denial of Service
There are several opportunities for an attacker to exploit in order to disrupt service. We briefly mention them here. TLS adds a lot of overhead to the proxy servers. If requests are accepted blindly without a challenge, a proxy’s resources could be overwhelmed. Re-INVITEs (INVITEs sent during an already established session which are used to change the properties of a session) could redirect media to a broadcast address. An attacker could flood a server with REGISTER or INVITE messages that could overwhelm the server. An attacker could potentially register a user’s device with many SIP-URIs (which basically phone numbers), causing the user’s device to “ring off the hook”. UAs and server’s should challenge questionable requests. Also, point-to-point authentication (via TLS) can reduce the potential for intermediaries to create falsified requests. It also makes it harder for attackers to make innocent SIP nodes into agents of amplification.

V. Conclusions

AVISPA was a good choice for modeling and verifying secrecy and authentication. However, it makes modeling other things difficult, such as DoS scenarios.
Registration hijack attacks are easy to prevent by authenticating servers and UAs (by means of TLS and username/password).

Point-to-point TLS connections prevent man-in-the-middle attacks, but does nothing if one or more of the proxies happen to be intruders. In effect, proxies are men-in-the-middle. This raises the question of how much trust is necessary with a proxy. Proxies must have access to some information, so what is the minimum set of that information? Basically, at the very least, the TO and FROM tags must be known to the proxy.

Finally, while SIP was initially applauded for being simple, it has become increasingly complex, mostly due to the introduction of security mechanisms to handle the various vulnerabilities outlined above.
