
Octopus and Related Protocols

Taral Joglekar

Ryan Wisnesky

CS 259

March 2006

1 Octopus Protocol

1.1 Introduction

Octopus [1] was proposed by Becker and Wille in 1998. The protocol aims to provide a

method for establishing a shared key in ad hoc networks. It is a contributory key estab-

lishment scheme, in which all the participating nodes contribute some material for the final

generated key. The aim behind constructing this protocol is to achieve a lower bound on the

number of simple (unicast) messages required to be exchanged for an ad hoc network. In

[1] the authors provide a basic protocol, the 2-d hypercube protocol, that achieves this goal

for the nodes whose number is a power of two. Then they extend the hypercube protocol to

build the Octopus protocol which works for any number of nodes.

1.2 Assumptions

During the specification of Octopus, the authors make some simplifying assumptions. They

assume that some kind of authentication protocol has already completed and all the par-

ticipating nodes have been authenticated. They also assume that a topology for the key

exchange has already been decided, wherein each of the participating node is either a part of

the 2-d core or is directly connected to one of the nodes in the core. The core members ar-

range themselves at the nodes of a d-dimensional hypercube, with each node having exactly

d neighbors.

1.3 Forming the Network Topology

The octopus protocol does not specify the methods of forming the required topology.

To investigate the formation of the network topology, refer to [2]. This paper gives the

adaptation of the CEDAR [3] protocol for formation of the topology. We will later investigate

1

Figure 1.1

the attacks possible on this protocol as specified in [2] and the intruder model for the attacks

to succeed.

1.4 Octopus Protocol Overview

The following describes the messages exchanged during the contributory key establishment

phase of the Octopus protocol. The topology, as explained above, is assumed to have been

established (see Figure 1.1). We show the key exchange for a 4 node core, but it is easily

generalized to a 2-d node hypercube core. For this exchange, nodes A, B, C, D are distin-

guished and form the core. Other nodes attach themselves to one of these nodes and we will

name them Na1, Na2 . . . , Nb1, Nb2, . . . , Nc1, Nc2, . . . Nd1, Nd2, . . . respectively. We will call

these attached nodes, peers, for a lack of a better term.

Note that all the key exchanges in this protocol use unicast messages and are 2-party DH

key exchanges in themselves.

Phase 1: Peer to Core key exchange:

Na1 ← DH → A

Na2 ← DH → A

. . .

Nb1 ← DH → B

Nb2 ← DH → B

. . .

Nc1 ← DH → C

Nc2 ← DH → C

2

. . .

Nd1 ← DH → D

Nd2 ← DH → D

. . .

At the end of this phase there are keys Kna1, Kna2 . . . are established.

Phase 2: Core to Core key exchange:

Each core member now does a key exchange with its neighboring cores. For this case,

each node has exactly 2 neighbors.

1. Each node calculates a key by multiplying all the keys it got from its peers, i.e. Ka =

Na1 ·Na2 · . . . , Kb = Nb1 ·Nb2 · . . ., etc.

2. A and B exchange Ka and Kb as DH exponents, while C and D exchange Kc and

Kd.

3. A and C as well as B and D exchange gKaKb and gKcKd as key exponents. This gives

the final key as

ggKaKb·gKcKd

Phase 3: Each core distributes the shared key to its connected peers. For example A would

send gKcKd and gKaKb\{Knaj} to Naj, where Knaj is Naj’s key.

Finally all nodes calculate the same shared key, using their own secret DH value.

2 Modeling the Octopus Protocol

We decided to model the octopus protocol in Murphi, which is a finite state model checker.

The aims of this model were

• To test for attacks on the key agreement between various nodes. Key agreement is

defined over all the nodes and this means that the final shared key value that each

node gets should be the same as any other node. In this context a successful attack

would mean that at least a pair of nodes have different values for their shared secret.

Though in practice, such an attack only prevents the nodes that have a key different

from the other nodes from participating in the conversation, the other nodes continue

exchanging messages. The disabled nodes might then cause a re-keying by trying to

enter the conversation again.

• To see how type of authentication affects the power needed by an attacker to disrupt

the system. In all wireless networks, creating a Denial Of Service by jamming signals

at the physical level is always possible, but easily detectable. We do not concern

ourselves with such attacks and only concentrate on attacks possible using valid (or

3

invalid) messages in the protocol framework. The system that evolves from a “rational

construction” process would hopefully yield a message exchange strong enough to resist

attacks from the most powerful attacker considered in the analysis. Alternately, it

would show that there does exist attacks on the main protocol that authentication

cannot fix. It is interesting to note that Becker and Wille state in their paper [1], that

their aim in building this protocol was to ensure that the agents participating in the

key exchange should not need to carry any secret information beforehand. Then they

cite two-party DH key exchange as an example of a protocol that achieves this. It must

be noted that the attacker that they consider in this model is a passive adversary and

hence their claim to the security of the protocol may be true in that circumstance, but

for an active adversary, this is certainly not possible as will be shown in the modeling

of the protocol.

We decided, given the symmetry in the core, that modeling the interactions between one

core member and its connected peers would be enough to decide on whether an attacker can

successfully attack the protocol. This decision was motivated by noting that the interactions

between any core and its peers is symmetric to any other core-peer interaction, and hence

any attacks on one part of the protocol can only be replicated by considering all the nodes.

As we will see, the power of an attacker interposing between a core and one of its peers

only affects that peer and cannot affect the further key establishment. Also we assume that

the cores are able to talk with each other in some secured manner. And even though they

might be affected by similar problems as the core-peer interactions, we can always model the

core-core interactions are peer-core DH key exchanges and apply the same security features

we need to apply for the peer-core case to the core-core case. Another thing to note is that

though the initial peer-core interaction is actually a DH key exchange, we can just as well

combine both the messages from the core to the peer into one message as the first message

from the peer to the core gives the core sufficient knowledge to complete the remaining

protocol, without sending the DH exchange message to the peer.

2.1 Modeling the DH Key

Our initial obstacle was to come up with a method to represent the Octopus key along

with its components in such a way that it would be possible to not only find meaningful

attacks quickly, but also ensure that details in the octopus key exchange are not missed. For

example, the secret components in the Octopus protocol are seen at various exponentiation

levels in various messages and our primary concern was how important was it to reflect this

in the model.

Our first thought was to model all the complexity of the key using a power-set method,

with each key being a set in the power set and then writing key simplification rules that

would allow each node to calculate as many keys as it can from the data its knows. We

quickly rejected this approach, not only because the power set growth is exponential in the

4

number of nodes, but mainly because all that this would have helped analyze was the attacks

possible by a passive adversary. Since it was already proved that a passive adversary cannot

eavesdrop on the key (under standard cryptographic assumption that the DH problem is

hard to solve), we did not want to include this complexity just to stress-test this aspect.

Other methods developed as we implemented the protocol, and the final method was to

implement the key using an array that represents the knowledge of each node about the key

contributions of all other nodes. The array was indexed by the node-id and contained the

value that the owner node thought as having been contributed by that agent. A secondary

array of booleans indicated whether the value contained in the first array was valid or invalid.

2.2 Adversary Model

The adversary could be modeled as:

1. being a part of the network with

• being a core member

• being a connecting node

2. being a passive or active agent proxying between a given core and its peers.

It was easy to see the manifestations of 1 without actual modeling:

1. As a core member the node has complete control on which peers it can allow to join to

the network, which peers’ keys finally contribute to the key exchange and which peers

finally join the group by getting keys from it. Since the core is such a critical component

in the system, its easy to see that a compromised core can affect the working of the

protocol and prevent key agreement. It is interesting to note here that since each core

is a part of the “core key exchange” it can always poison the key (by sending different

keys to different core members) so that none of its neighboring the core members agree

on a single key. This means that a compromised core can harm most of the network.

2. As a peer, it can send only one message and receive one message, the only thing possible

for such an attacker is to try to poison the key in such a way that the final key is “weak”

in the cryptographic sense. We did not pursue this thread of inquiry actively, though

here as some thoughts: A good way for the adversary to “weaken” the key is to always

select a small DH key exponent, that can be found by an active adversary by brute

force. If the adversary can send 1 as its DH key component then the two-party DH key

exchange would always yield the key to be 1. Though this results in a weak two-party

DH key, the attack does not generalize to the Octopus protocol. Finally, the model

that we pursued was that of an active adversary, interposed between one core member

and its peers. Hence we checked for key agreement only between the peers connected

to this single core member.

5

The initial adversary model was that of a passive attacker, snooping on the whole network

and being able to intercept and replay messages. This we used until we had successfully

modeled the key in the protocol.

The model of an active adversary we built was that of an adversary has control over the

whole network. The reason for choosing this model was that we were trying to do “construc-

tion” and hence we decided that a new system should be designed with the strongest attacker

in mind. Of course, the various abilities of an attacker do define a sort of componentization

of the protocol features, with different message components put in to defend against various

softs of attackers. To enumerate, the exact abilities of the attacker that we modeled were:

• Ability to eavesdrop and store messages. (Passive)

• Ability to interrupt the flow of any individual message.

• Ability to construct new messages as and when possible.

• Ability to modify only known contents of the messages.

As is obvious, the ability to disrupt flow and modify or corrupt any message would

always lead to an attack in which the eavesdropper was successful in preventing the key

establishment from ever happening. Hence we do not concentrate as much on the key

establishment attacks, as we do on the key agreement attacks, i.e. if the protocol completes

in the presence of an active attacker, how much harm can an attacker do to that run. Another

justification for this approach comes from the fact that in an ad hoc network the amount

of messages exchanged has to be kept to a minimum and hence any disruption of messages

from a peer to a core (or vice versa) would be registered as that peer (or core) having left the

system or never having entered the system. So this might result in livelocking the system,

with all nodes always requesting re-keying to incorporate the network changes. We saw no

strong defense against this attack through a protocol message exchange.

A shortcoming of the protocol that we realized was that though the protocol says that

the shared key is ”contributory”, there is no direct contribution of the core nodes to the

key! Specifically, if no node is connected to a given peer, then the secret that it uses for

the core-core exchange, which is product of all the keys exchanged with its peers, is always

1, and hence a passive attacker that finds a lone core or an active attacker that is able to

isolate a core node can effectively find the shared secret.

2.2.1 Modeling Progression

For a passive adversary, the model with no extra parameters gave key agreement. With an

active adversary, it failed immediately as adversary could change any and all data. To avoid

this we had to use the secrets established during authentication. These were of two types.

6

1. Secret keys: The keys are either weak or strong, but since the secret keys were to be

used just once during Octopus, we assumed that there was no problem in encrypting the

whole message using these keys. So now we can exchange Ek(PeerId, CoreId, DH-component)

from either side and achieve key agreement. But this cannot work as is because we need

to put in the peerid in the message in the clear to let the core know which peer-secret

key to use to decrypt the message. One attack is that the adversary can store messages

and replay them during later re-keying. This attack comes under the general category

of Replay attacks and ia hard to avoid in ad-hoc networks, because there are no authen-

tication rounds. The general way to deal with this attack is to have a one time token

between the communicating parties. This could either be a counter, a time-stamp, or

a hash-chain (one time passwords). The standard method of challenge-response does

not work with Octopus because of the message constraint.

The other attack is a message redirect. If the messages do not contain the identity of

the sender as well as the receiver, then an attacker can redirect the message to either

a different core/peer.

After fixing the protocol to handle these attacks, the communicating messages for a

secret key protocol are:

Peer→ core:

Peerid, {gx, Coreid, P eerid, one-time-password, return-nonce}Ksecret

Core→ peer:

{Other-key-components, P eerid, Coreid, return-nonce}Ksecret

2. Public Keys: With public keys, there need not be exchange of any secret keys during

authentication, except of course the one required to prevent replay attacks. So if we

extend the same protocol developed with Secret Keys to Public Keys, we will need

some way to encrypt both messages. If all the communicating parties can have public

keys then we can use Public key encryption for both sides.

Peer→ core:

Peerid, {gx, Coreid, P eerid, one-time-password, return-nonce}Kcore

Core→ peer:

{Other-key-components, P eerid, Coreid, return-nonce}Kpeer

But under the assumption that only a few members of the group can have public keys

(namely core members) then we need some way to encrypt the out-going message. The

peer can provide the key material in the first message.

7

Peer→ core:

Peerid, {gx, Coreid, P eerid, one-time-password, return-nonce, Ksecret}Kcore

Core→ peer:

{Other-key-components, P eerid, Coreid, return-nonce}Ksecret

The next idea is that since the Peerid is no longer necessary for key disambiguation,

why send it in the clear. But if we remove that, the core becomes susceptible to a DOS

attack. Because then an adversary can keep on sending garbage messages to the core,

and cause the core to decrypt all of them before it can discard the message. Since PKE

consumes a lot of resources, this creates a DOS on the core. Hence we must keep the

Peerid in the clear, which would assist the core to detect a possible DOS attack if the

Peerid in the clear and that in the encrypted text do not match.

The next question is, what if the attacker can generate messages. Can he generate a

valid message for a different peer? In this case the attacker can generate all other fields

except for the one-time password field and hence it cannot generate a valid attack.

Can an attacker do a man-in-the-middle? The problem with an attacker being able to

mount a MITM attack is that the public key of the core is obtained by a peer during

the authentication phase, which works on a different channel than the wireless one.

In fact this channel is mostly a physical channel that needs to be established just for

the exchange of these keys [5] and hence we assumed that this channel is sufficiently

secured.

Thus the final protocol that gave key agreement in presence of an active adversary was:

Using Secret Keys:

Peer→ core:

Peerid, {gx, Coreid, P eerid, one-time-password, return-nonce}Ksecret

Core→ peer:

{Other-key-components, P eerid, Coreid, return-nonce}Ksecret

Using Public Keys:

Peer→ core:

Peerid, {gx, Coreid, P eerid, one-time-password, return-nonce, Ksecret}Kcore

Core→ peer:

{Other-key-components, P eerid, Coreid, return-nonce}Ksecret

8

3 CEDAR

CEDAR is used in conjunction with a generalized version of Octopus to provide dynamic

core election and key establishment [2]. To look into CEDAR, we mostly used pencil and

paper methods after building a Java model of the protocol. The original intention was

to use the Java to determine future directions to be explored (for example, we ran the

protocol on various topologies with random messages injected to see if we could cause an

inconsistency. Such a result would only suggest that inconsistencies were possible.) After

building the model, several obvious attacks occurred to us and we thus abandoned the model

and thought about them offline. The Java code is included in our submission.

3.1 Overview

The CEDAR protocol is designed to calculate an approximation of the Minimum Dominating

Set (MDS) of an ad-hoc network. An ad-hoc network is modeled as an undirected graph,

where edges represent communication ability and the nodes represent agents. An undirected

graph’s Dominating Set (DS) is a set of nodes such that every node in the graph is either in

the DS or is connected to a node in the DS. In other words, for a graph (E, N) with DS S:

∀n ∈ N∃d ∈ Ss.t.(n, d) ∈ E

An MDS is a DS with the minimum number of nodes. A MDS for a graph is referred to

as the core of the graph. Although a node may be connected to more than one node in the

core, each node chooses only one node in the core to be that node’s dominator. Thus, two

distinct dominators will never share dominated nodes.

In terms of communication, if we assume that every node in the core has the ability to

communicate with every other node in the core, then it is possible to route messages between

any two points. One way this can be accomplished is to core-broadcast a query of which

dominator is connected to the destination, and then send the data to that dominator. How

these virtual links are established is a potential target for attack but is beyond the scope of

our project.

For the purposes of Distributed Diffie-Hellman, because every node is either in the core

or connects to exactly one node in the core, we can view the core nodes as the core nodes

in a generalized Octopus protocol, where more than four nodes make up the core. In other

words, Octopus requires connectivity between every node in the core and the rest of the

nodes to be in disjoint sets where each set is connected to exactly one node in the core.

These pre-requisites are exactly met by running CEDAR.

3.2 Algorithm

Before we can examine how CEDAR works, we need a few definitions:

9

Let N1(u) denote all the nodes that node u is connected to.

Let N ′
1(u) denote N1(u)−{u}. This is often referred to as the first deleted neighborhood.

Let dom(u) denote u’s dominator.

Let d(u) = |N ′
1(u)|. That is, d(u) is the degree of the first deleted neighborhood.

Let d∗(u) denote the number of u’s neighbors that have chosen u as their dominator.

This is referred to as u’s effective degree.

Now, for the algorithm itself. The following algorithm is run at each node u:

1. Periodically, u broadcasts a beacon (u, d∗(u), d(u), dom(u)) to its neighbors.

2. If u does not have a dominator, it sets its dominator to be the node v ∈ N1(u) that

has the largest value for (d∗(u), d(u)) in lexicographic order. u may choose itself as its

own dominator.

3. u then sends v the message (u, {(w, dom(w))|∀w ∈ N ′
1}). v then increments d∗(v).

4. If d∗(u) > 0, u joins the core.

There are several key points to note about this algorithm:

• The algorithm approximates the MDS because when choosing a dominator, nodes

prefer to select nodes that are already dominators, or, failing that, are well connected.

• The algorithm runs in constant time, and depends on the order of messages received.

For instance, if a node doesn’t hear from its neighbors before it must select a dominator,

then potentially that node could choose itself. So, potentially, every node could choose

itself.

• The only way for a node to leave the core is by listening to its neighbors beacons and

discovering that its effective degree has become zero.

• A node only re-chooses its dominator if the dominator disappears.

• The core nodes do not know the identities of all the other core nodes. (More on this

later).

• The generalized Octopus protocol relies on reliable core-broadcast. Thus, if there is

inconsistent knowledge about who is in the core, then broadcast can fail, and then

key-agreement may fail. Broadcast may also fail by other intruder actions, but these

are not investigated here, mostly because of complexity.

10

3.3 Issues to Investigate

There are several issues we wanted to investigate:

1. Can an intruder prevent the formation of a stable core?

2. Can an intruder cause an inconsistency in which nodes do not agree on who is in the

core?

3. Can an intruder cause an incorrect core to be formed?

3.3.1 A Weak Intruder

The answer to these questions depends a great deal on the intruder model. For now, assume

that the intruder does not have the ability to interfere with communication; that is, the

intruder can not cause cause messages to be dropped.

The answer to the first question is no. By point 4 above, a node only re-chooses its

dominator if that dominator has disappeared. So if an intruder cannot make it look like

a node’s dominator has disappeared, then the intruder cannot force a node to change its

dominator. That means that once dominators are chosen, they cannot be changed by the

intruder. And because every node will eventually choose a dominator, there is no action

the intruder can take to modify the core once that point is reached. So, an intruder cannot

prevent the formation of a stable core.

The answer to the second question is a qualified yes. Because of the beacon messages,

knowledge is self-correcting. In other words, suppose that dom(a) = b. Then b’s beacon

message to its neighbors includes the information that a dominates b. So, if one of b’s

neighbors was fooled into believing something else by an intruder, this information will

be corrected during the next beacon broadcast. So, the intruder may cause temporary

inconsistency, which may wreak havoc during specific times during message routing. But

there is no steady state that the intruder can prod the network into where there is an

inconsistency.

The answer to the third question depends on the phrasing of the question. There are two

interpretations:

1. Can an intruder, who does not form part of the network topology, cause an incorrect

core to form? The answer here is no. This is because each node will choose itself or

one of its neighbors to join the core. Thus by definition, every node is within distance

1 of a core node, and so a DS will be formed. That being said, it is relatively easy

for an intruder to cause many more nodes to join the core than are really required:

the intruder just has to communicate to each node that it has chosen that node as

a dominator, and that node will then join the core. Note that the intruder cannot

permanently force a node out of the core that has been elected into the core, because

that node’s neighbor that isn’t the intruder (of which there must be at least one), will

11

continue to broadcast that it needs that node as a dominator. If none of the neighbors

did need that node in the core, then that node will essentially behave correctly: it will

still choose itself or a neighbor as its dominator.

2. Can an intruder who is part of the topology cause an incorrect core to form? In this

case, the intruder could communicate to a node that it (the intruder) has a very high

effective degree, thus causing the node to choose the intruder as its dominator. In

a very degenerate case, where the intruder is connected to every node, the intruder

could end up being the sole core node. Technically, such a core is correct, but it is

surely not a secure situation. The moral of the story here is that it is very easy for an

intruder to cause itself to get elected to the core. However, there is another possibility

here: the intruder can masquerade as another node. In such a case, a node would elect

the intruder to the core, but the intruder would act as though it were another node

in the core. In such a case, the configuration is incorrect because the nodes have an

incorrect view of the network topology. It is unclear as to whether such a configuration

is “technically” correct or not – See figure 3.2. Regardless, in such a configuration,

routing would fail, and thus key-establishment would fail.

3.3.2 A Strong Intruder

These answers to these questions change when we assume that the intruder has the ability

to drop messages.

In this new model, the answer to the first question is yes. This is because an intruder

that can drop messages is essentially causing a change in the network topology, and changes

in network topology cause a reconfiguration of the core set. A simple scenario is shown in

figure 3.1. However, from a certain point of view, this scenario would also happen if the

messages were dropped naturally, so the extent to which the intruder is causing this attack

is debatable, much like in point 2 above.

The answer to the second question is also yes. As before, the intruder can send messages

with incorrect dominator information, and then intercept and drop the beacon messages.

This would result in inconsistency as to what the core is, and as a result, routing would fail,

and thus so would key-establishment. Note that by core inconsistency, we mean neighbors

agreeing on whom in their shared neighbors the core members are: no node has knowledge

of the entire core set (as long as the core set isn’t identical to the node’s neighbors.)

The third question changes in the sense that having the ability to drop messages can force

a node to remove itself from the core. That, coupled with an intruder’s ability to replay

messages, can result in an incorrect configuration. See figure 3.3 (a more animated display

is included in our presentation slides). This attack is a wormhole attack [6].

12

A B

A B

A B

BA

A and B start connected

A dominates B

Connection lost, so B enters core

Connection restored, A removes
itself from core.

Repeat with A and B swapped.

Figure 3.1

Intruder dominates all nodes
because it reported high effective
degrees

Figure 3.2

13

A

C

B

I

A C

A B

A

C

B

B

A to B: B dominates A

Topology Change
A to C: C dominates A

Toplogy Change
C no longer in Core
Intruder connects to A,B
A chooses I as dominator
I to B: B dominates A
I to A: B's earlier beacon
Result: A,B think they're neighbors

This is what A thinks

Figure 3.3

14

3.3.3 Authentication

In the preceding discussion, no authentication was assumed. Thus it is natural to ask how

the answers to the questions change assuming that there is an authentication mechanism in

place. (One may also ask how these answers change if there is a nonce mechanism in place

to prevent replay attacks, but nonce’s are somewhat tricky in ad-hoc networks because when

a node leaves, it is not necessarily sure where to restart its count of nonces. Therefore we

omit such a possibility here.)

Suppose the intruder is limited to replaying messages it has already seen, and because of

authentication, can only replay to node n messages that actually were addressed to node n.

Then the answers to the questions change as follows.

For the first question, the answer is still a yes, because the intruder was not replaying

messages to generate this attack.

For the second question, the answer is also still a yes. However, the intruder is limited

to providing incorrect information that has already been sent; i.e. it must re-send messages

from when the node’s beacon was different. However, the effect is still the same. Without

the ability to drop messages, the answer to the question is a qualified yes, as before.

For the third question, the interesting case is when the intruder may drop messages

and only replay them. This is because without the ability to drop messages, the intruder

may only replay messages, and thus it may not force changes in topology which cause a

recomputation of the core set. The answer to this question is a yes, although the specific

scenarios in which this occurs is more limited before. See figure 3.3.

4 A Digression on GDH-2

The A-GDH.2 protocol suite is a set of protocols that achieve the same results as the Octopus

protocol: establishment of a shared secret in a multi-party environment. In [4], the authors

examine the security of GDH.2 using a particular mathematical technique. Because GDH.2

is similar to Octopus, we might expect that we would be able to use the techniques from

their paper to analyze Octopus. However, that is not the case, and this section shows why.

The GDH.2 protocol is a stepwise protocol in the sense that during each round of the

protocol, exactly one node receives information from another node, processes it, and then

sends the new result on to another node. The processing that occurs at each step is of the

form output = inputx, where x is uniquely determined by the node. As such, each node

may be viewed as providing a service of the form s(gα) = gαβ, where g is the base of the

Diffie-Hellman protocol. At the end of the protocol, the last node broadcasts the final result

and each node is then able to compute the shared secret.

Because there is no authentication in the protocol, each node blindly waits to receive

an input and then sends out its output; so, an intruder can essentially “play” the nodes to

try to determine the shared secret. In other words, suppose the intruder knows gx for some

x. It can then contact node ni and calculate gxni ; it can then contact node nj and thus

15

calculate gxninj , and so forth. (Additionally, the intruder obtains some extra information

about inverses, but that avenue is not explored here). So, if the intruder can start from its

initial knowledge and play the services to obtain the shared secret, then the protocol is not

secure. So, we must determine when the services can be played such that the intruder can

obtain the secret. Let ei denote the exponent that node i raises its input to. Because of

commutativity, when the agent uses service i si times (in any order), we end up with the

equation

g(e1)s1 (e2)s2 ...(en)sn=gk

where gk is the shared secret. If we expand out the shared secret we get

g(e1)s1 (e2)s2 ...(en)sn
= g(e1)k1 (e2)k2 ...(en)kn

And thus we can equate exponents to get a linear system

s1 = k1 and s2 = k2 and ... and sn = kn

If this linear system has no solution, then there is no way the intruder can play the nodes

to obtain the secret. (Actually, we think that this doesn’t take into account the fact that

the intruder also gains information about inverses, but we haven’t explored it further.) In

addition, the initial information that the intruder has must also be represented as a service,

but that is inconsequential.

So, why can’t this technique be used in our analysis Basically, our services do not take

one input. For instance, one of our services is of the form s(α1, . . . , αn) = gα1...αn . (This

is the initial exchange where the core node does pair-wise DH with each of its attached

nodes and then communicates with its partner in the core). Therefore, we do not have

commutativity when we try to form our equation. In other words, in GDH.2, because

services are commutative, we can view them as all being applied one after another, and

hence every different ordering of the services is equivalent to the ordering where all of service

1 is applied first, then all of service 2, etc. For instance, applying e1 and then e2 and then e1

again is equivalent to applying e1 twice and then e2. This means that we only have to solve

one equation to see if there is an attack, because that one equation represents all possible

ways of using the services. (Of course, solving that equation involves solving a finite linear

system of mini-equations of exponent equality.) Once we move to Octopus and have multiple

inputs, we no longer have this property, and hence have to check a different equation for each

possible configuration – there are infinitely many equations. In addition, each configuration

may itself be arbitrarily long, leading the an intractable problem. Figure 4.1 illustrates the

situation.

5 Conclusions

We found several non-trivial attacks on Octopus and also found ways to prevent them by

leveraging authentication informatiom. We also found several attacks on CEDAR (the most

16

Initial Knowledge

service1

service2

service n

key

........

apply s_1 times

apply s_2 times

apply s_n times

GDH.2 Model

Initial Knowledge

service1 service1

service2

service1

key

............

Octopus Model

Figure 4.1

17

interesting of which is a wormhole replay attack). In the process we gained experience

both with Murphi and with straight-forward mathematical techniques for examining Diffie-

Hellman. We realized that Murphi would be a much stonger tool with the ability to do limited

symbolic manipulation someday, and much simpler to use if it supported some subtying

beyond the union of basic types. On the whole, we are very satisfied with the results. we

gained a lot of knowledge about a lot of different protocols in our long search for the right

one to analyze. We realized, during this search, that most protocols are not designed with

security as a major concern. Most protocol designers usually try to satisfy the security

concerns by leveraging already existing security methods or by later changing the protocol

to prevent known attacks. We find that ”rational construction” of protocol security might

be of immense use during protocol design.

References

[1] Becker et al. Communication Complexity of Group Key Distribution. ACM Confer-

ence on Computer and Communication Security, November 1998. Available online at

http://citeseer.ist.psu.edu/becker98communication.html

[2] Du et al. A group key establishment scheme for ad hoc networks. Proceedings of the 17th

International Conference on Advanced Information Netwoking and Applications. Avail-

able online at http://doi.ieeecomputersociety.org/10.1109/AINA.2003.1192934

[3] Sinha et al. CEDAR: Core extraction distributed ad hoc rout-

ing. Proc. of IEEE INFOCOMM ’99, 1999. Available online at

http://citeseer.ist.psu.edu/article/sivakumar99cedar.html

[4] Pereira et al. A Security Analysis of the Cliques Protocols Suites. In 14-th IEEE Com-

puter Security Foundations Workshop. IEEE Press, June 2001. Available online at

http://citeseer.ist.psu.edu/pereira01security.htm

[5] Stajano and Anderson. The Resurrecting Duckling: Security Issues for Ad-hoc Wireless

Networks

[6] Hu et al. Packet Leashes: A Defense Against Wormhole Attacks in Wireless Ad Hoc

Networks. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM 2003), April 2003.

18

