
CS 259 Final Project Report: BitTorrent

Nathan Marz and Raylene Yung

March 20, 2008

1 Overview of BitTorrent Protocol

In BitTorrent, the data to be shared is divided into many equal-sized portions called pieces. Each piece
is further sub-divided into equal-sized sub-pieces called blocks. All clients interested in sharing this data
are grouped into a swarm, each of which is managed by a central entity called the tracker. Each client
independently finds a file, called a torrent, that contains the location of the tracker along with a hash of
each piece. Clients keep each other updated on the status of their download. Clients download blocks from
other (randomly chosen) clients who claim they have the corresponding data. Accordingly, clients also send
data that they have previously downloaded to other clients. Once a client receives all the blocks for a given
piece, he can verify the hash of that piece against the provided hash in the torrent. Thus once a client has
downloaded and verified all pieces, he can be confident that he has the complete data.

As specified in the RFC (http://jonas.nitro.dk/bittorrent/bittorrent-rfc.html), BitTorrent can be described
in terms of two sub-protocols: one which describes interactions between the tracker and all clients, and one
which describes all client-to-client interactions.

1.1 THP: Tracker HTTP Protocol

THP serves two purposes. First it defines how an agent connects to the tracker in order to register with
the swarm, as well as receive a list of other members of the swarm. Secondly, this protocol describes how an
agent periodically reports its progress to the tracker.

We note that denial of service attacks against the tracker are already well-known. Also, the BitTorrent
protocol is evolving to allow for multiple trackers per swarm, reducing the effectiveness of these attacks. Thus,
for the purposes of this project, we chose to abstract away the purpose of the tracker, and concentrated on
the second sub-protocol (PWP) instead.

1.2 PWP: Peer Wire Protocol

Once agents are connected to a given swarm, PWP describes all interactions between agents. Essentially,
this sub-protocol defines the necessary functions of the protocol.

It describes the following actions:

• agents notify one another of missing and completed pieces

• agents contact one another to request data

• agents connect to one another to send data

1

http://jonas.nitro.dk/bittorrent/bittorrent-rfc.html


2 Security Properties

The attacker we consider has as much power as any other agent in the network. Our attacker does not have
control of the network. As will be described later, BitTorrent lacks authentication and it is possible to forge
any message from any agent at any time. We wanted to study how strong of an attack could be done even
with this limited adversary. There are two important security properties to consider:

• Integrity: An attacker should not be able to force a client to accept data not used to create the torrent
file. This property is trivially fulfilled since before a client accepts downloaded data as correct, he
verifies the hash in the torrent. In other words, the data is as correct as the strength of the hash.

• Resistance to DOS: An attacker should not be able to cause the download rate for any client to fall
below a certain low threshhold, without doing too much work himself. We chose to study this property.

3 Modeling of Protocol

As mentioned in the overview of the protocl, BitTorrent uses randomization to decide which clients a given
client chooses to download from, as well as which block to request. Thus, we chose to use PRISM as our
model checker because it was the only one that can model randomness. We chose to model all normal agents
deterministically with random choices, while the attacker behaves non-deterministically.

3.1 Problems with PRISM

Although PRISM was the most suitable model checker available, there are inherent difficulies with using
PRISM to model complex protocols.

3.1.1 Symmetry and Scale

In PRISM, there are no complex data structures. In other words, every agent must be modeled as its own
set of variables and transitions. This is both time-consuming and unintuitive to design by hand, so we chose
to use PHP to dynamically generate PRISM code. Our final PHP script takes the parameters (number of
pieces), (number of blocks per piece), and (number of agents). All of our resulting models assumed one seeder
and one attacker.

3.1.2 Complex Logical Structures

In order to model interactions between agents, nested logical if-else structures are used in the BitTorrent
protocol. For example, we would like to model:

If received block "l" for piece "p"
If all blocks downloaded for "p"

If "p" is verified (hash matches torrent-hash)
set status of "p" to downloaded/verified

Else clear statuses for all blocks in "p"

However, PRISM only allows commands of the following form:

[condition]->[probability distribution of results]

2



In order to solve this problem, we created a data structure in PHP called TieredTransition. A Tiered-
Transition has the following structure:

Each path from the root to a leaf results in one PRISM command, where the resulting condition is the
conjunction of all conditions along the path, and the resulting probability distribution is computed from
combining conditional probabilities along the path. In the above example, our script generates the following
PRISM code:

[] a=1 & b=1 & c=1 -> 0.5: (a=0) & (c=2) + 0.5: (a=2) & (c=2);
[] a=1 & b=2 -> 0.5: (a=0) & (c=3) + 0.5: (a=2) & (c=3);
[] a=1 & !(b=1 & c=1) & !(b=2) -> 0.5: (a=0) + 0.5: (a=2);

An advantage of this data structure is that we can easily define the ELSE construct by taking the
conjunction of the negations of a node’s siblings.

3.1.3 Nondeterminism

In BitTorrent, agents operate independently. However, if we were to model agents independently in
PRISM, they would act nondeterministically. Subsequently, possible attacks found in PRISM would include
nondeterministic decisions made by both the attacker as well as all other agents. Additionally, if agents
are modeled independently, it is possible for agents to be completely inactive if PRISM chooses never to
follow their transitions. In order to solve these problems, we used two techniques: turn based modeling and
sequential task ordering.

(a) Turn Based Model

In our turn based model, agents act in a round-robin manner. We added a global variable indicating
the id of the currently active agent, and incremented it accordingly. By adding the value of this turn
counter variable to each transition, we ensure that a given agent’s transitions are only followed during
their turn. Additionally, every agent gets a chance to act.

Here is a sample turn-based transition model for Agent0.

The tasks referred to above are actions such as responding to a request for a block, sending requests,
notifying other agents that a piece was just downloaded, etc.

(b) Sequential Task Ordering

3



As mentioned above, an agent must act deterministically on their turn. However, many of their
tasks may be independent, such as sending a block versus receiving a block. Additionally, there
are conditions to performing each task, so not all tasks need be performed every turn. We achieve
determinism within each turn by imposing an ordering on the tasks. Like the turn-based counter, this
is implemented via a global task-counting variable. Each task has an associated id. When this variable
is set to a particular task’s id, the condition required to perform the task is checked. Regardless of
whether the condition holds (and the task subsequently performed), the variable is incremented. A
TieredTransition exemplifying this technique is shown here:

3.2 Resulting Model

Unfortunately, after implementing the above techniques, our PRISM models were extremely large. Even
after implementing several optimizations, the largest feasible model we could construct consisted of 2 agents,
2 pieces, 1 block per piece, 1 seeder, and 1 attacker. Anything larger caused PRISM to run out of memory.
These models are too small to emulate any realistic scenario.

3.2.1 Optimizations

As mentioned above, in order to reduce the size of our model we implemented several optimizations:

• the seeder does not request blocks from anyone else

• the seeder does not send state updates to anyone else

• the agents do not send blocks to the seeder

3.3 Attacker Design

Designing a model for an attacker in a randomized protocol is particularly difficult. Even though an
attacker can forge any message at any time, allowing this amount of nondeterminism would be unrealistic.
For example, suppose Agent1 makes a request for a block from Agent2 and is now expecting a response.
An attacker has an opportunity to forge bad data that appears to come from Agent2 but must do so before
Agent2 responds directly to Agent1. If the attacker was allowed this much nondeterminism, the model
checker would assume the attacker always preempts other agents, as in this example. This is because the
model checker chooses nondeterministic choices so as to maximize the probability of a successful attack.
However, in practice, this amount of nondeterminism is unrealistic because an attacker lacks this knowledge.
In our design, the attacker has nondeterminism in the attack, but for parts where the attacker requires a
certain amount of knowledge, he must use randomness to guess any knowledge he was unable to learn.

4



One could also try using probabalistic models so that the attacker can make better guesses and have
better attacks. However, the amount of effort this entails makes the idea of using model checking to analyze
BitTorrent less appealing. Instead of defining a few simple rules for the scope of possible attacks, as can be
done with deterministic protocols in Murphi, constructing such complex probabilistic models is equivalent to
determining the attacks by hand. Thus, modeling the attacker is yet another weakness of using a probablistic
model to model a complex randomized protocol.

4 Security Analysis

Through the process of constructing the model, we discovered some intuitions for how denial of service
attacks would work on the PWP protocol. Although, as mentioned above, automated model checking was
infeasible, we were able to use Rational Reconstruction techniques to discover some interesting protocol
weaknesses.

4.1 Spoofing

BitTorrent, as defined in the RFC, does not require any authentication of PWP messages. In other words,
an attacker can forge any message under the guise of any other agent. Due to this, an attacker can easily
change agents’ perceptions of other agents. For example, an attacker could make Agent 1 think Agent 2 has
some piece p even though this isn’t true. Accordingly, Agent 1 might waste resources and time requesting
various blocks from p from Agent 2. Furthermore, after repeated unfilled requests, Agent 1 might mistakenly
believe Agent 2 to be an unreliable source of data, and stop sharing data with them. In the worst case, in
this example the connection Agent 1 and Agent 2 could be completely severed.

Interestingly, through Rational Reconstruction we discovered that the handshaking protocol of BitTorrent
provides some protection against a spoofing attack. During a handshake, the two agents involved will ex-
change bit-arrays encoding the completed and missing pieces for each party. Once a handshake is completed,
the two agents are considered to be connected and eligible to share data. The BitTorrent RFC suggests that
given some unusual behavior by either party, the connection is severed until a new handshake is initiated
and completed. However, the RFC does not clearly define the conditions upon which a connection should
be re-established. This is one area in which the RFC can be greatly improved. We feel that anytime an
unexpected message is received, the connection should be severed.

In the example above, once Agent 2 receives a request for a piece it does not have, it should sever its
connection with Agent 1 until another handshake is completed.

4.2 Fake Piece Messages

As described before, to download a piece, an agent downloads each block for the piece separately and
possibly from different agents. If the piece fails to verify once all blocks are downloaded, the agent must
re-download every block because he doesn’t know which block was bad. In a real world torrent, there can be
more than 200 blocks per piece. So for every bad block an attacker succeeds in getting an agent to accept,
the agent has to do 200× more work.

The RFC is not clear in what an agent should do if he gets a block from someone he didn’t request it
from. Clearly, based on the analysis above, an agent should not accept any blocks that were not specifically
requested. This would make it much more difficult for an attacker to succeed in getting an agent to download
a bad block. To be successful, an attacker would have to guess both which blocks a given agent is missing,
along with who the agent requested them from, if anyone. However, because the ratio of work done by the
agent to the attacker is so high, 200:1, even if it took an attacker 30-40 guesses per success, this would still
be an effective attack.

5



There are some additional messages that could be added to the protocol to make this sort of attack
impossible. Consider the following modification to the protocol:

• Agent A requests block B from agent C, and in the message adds an additional random nonce R

• Agent C sends (C,B,R) to A

• Agent A accepts B if it comes from the correct agent and the nonce is the same

Since our attacker model does not have control of the network, and thus cannot intercept messages, this
modification makes it impossible for an attacker to forge a block message.

Given this modified version of the protocol, an attacker can still cause an agent to accept bad blocks if
the agent sends requests directly to the attacker. However, if an agent downloads all blocks for a piece from
just a few agents, he should be able to quickly learn which agents are ”bad” and stop making requests from
them.

5 Conclusion

Our results from the analysis of BitTorrent were threefold. First, we discovered many interesting higher-
level techniques for constructing probabilistic models and dealing with nondeterminism. We believe these
techiques can apply to any complex system modeled in PRISM. Secondly, we found limitations of PRISM
itself. We realized it was not suitable for the analysis of BitTorrent because of the size of the state and
variable space. Alternatively, PRISM is more suitable for a protocol with a small fixed number of messages.
Finally, we found several security weaknesses in BitTorrent and proposed modifications to the protocol which
solved these issues.

6


	Overview of BitTorrent Protocol
	THP: Tracker HTTP Protocol
	PWP: Peer Wire Protocol

	Security Properties
	Modeling of Protocol
	Problems with PRISM
	Symmetry and Scale
	Complex Logical Structures
	Nondeterminism

	Resulting Model
	Optimizations

	Attacker Design

	Security Analysis
	Spoofing
	Fake Piece Messages

	Conclusion

