
SECURITY ANALYSIS OF NETWORK PROTOCOLS:

COMPOSITIONAL REASONING AND

COMPLEXITY-THEORETIC FOUNDATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Anupam Datta

September 2005

c© Copyright by Anupam Datta 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

John C. Mitchell
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Dan Boneh

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

David L. Dill

Approved for the University Committee on Graduate Stud-

ies.

iii

iv

Abstract

This dissertation addresses two central problems associated with the design and security

analysis of network protocols that use cryptographic primitives. The first problem pertains

to the secure composition of protocols, where the goal is to develop methods for proving

properties of complex protocols by combining independent proofs of their parts. In order

to address this problem, we have developed a framework consisting of two formal systems:

Protocol Derivation System (PDS) and Protocol Composition Logic (PCL). PDS supports

syntactic derivations of complex protocols, starting from basic components, and combin-

ing or extending them using a sequence of composition, refinement, and transformation

operations. PCL is a Floyd-Hoare style logic that supports axiomatic proofs of protocol

properties. The eventual goal is to develop proof methods for PCL for every derivation

operation in PDS, thereby enabling the parallel development of protocols and their security

proofs. In this dissertation, we present proof methods for reasoning about protocol compo-

sition and a class of protocol refinements. The composition theorems are formulated and

proved by adapting ideas from the assume-guarantee paradigm for reasoning about dis-

tributed systems. PDS and PCL have been successfully applied to a number of industrial

network security protocols, in several instances identifying serious security vulnerabilities.

The second problem pertains to the computational soundness of symbolic protocol anal-

ysis. At a high-level, this means that a logical method for protocol analysis should have

an associated soundness theorem, which guarantees that a completely symbolic analysis

or proof has an interpretation in the standard complexity-theoretic model of modern cryp-

tography. Our approach to this problem involves defining complexity-theoretic semantics

and proving a soundness theorem for a variant of PCL which we call Computational PCL.

v

While the basic form of the logic remains unchanged, there are certain important differ-

ences involving the interpretation of implication in terms of conditional probability and the

semantics of the predicates used to capture secrecy properties.

The final result in the dissertation spans both the problems. An alternative way of

specifying and reasoning about protocol composition is through equivalence or simulation

between the real protocol and an ideal protocol, which is secure by construction. We prove

that, under reasonable assumptions about the communication model, three simulation-

based definitions for protocol security–universal composability, black-box simulatability,

and process observational equivalence–express the same properties of a protocol. The

proofs are axiomatic and are carried out using process calculus equational principles. Since

these equational principles are rather general, the proofs carry over to a number of process

calculi, in particular, the probabilistic poly-time process calculus, whose execution model

is consistent with the complexity-theoretic model of cryptography. We also observe certain

important differences between the composition paradigm of universal composability, and

the assume-guarantee paradigm of PCL.

vi

Acknowledgements

I would like to thank my advisor, John Mitchell, for valuable guidance. I have learnt a lot

from him. I would also like to thank the faculty members on my reading and orals commit-

tees: Dan Boneh, David Dill, Rajeev Motwani, and Stanley Peters for providing feedback

on the research results. Additional thanks to Dan and David for teaching an excellent set of

courses which helped me greatly in my research. I would also like to express my gratitude

towards Dusko Pavlovic and Andre Scedrov for providing direction and advice. Much of

the work on the logic and derivation system presented in this dissertation was carried out

in collaboration with Dusko.

I was fortunate to be part of a very active research group here at Stanford. I have worked

closely with and learnt a lot from several students, postdocs and visitors in our group. Spe-

cial thanks to Ante Derek and Ajith Ramanathan for the excellent brain-storming sessions

and the fun times. Each chapter in this dissertation is joint work with at least one of them.

Thanks also to Andrei Aron, Dan Auerbach, Michael Backes, Adam Barth, Changhua He,

Cary Kempston, Ralf Küsters, Mathieu Turuani, Arnab Roy, Vitaly Shmatikov, Mukund

Sundararajan, and Bogdan Warinschi for fruitful collaborations and interesting conversa-

tions.

I would also like to express my gratitude towards several faculty members at IIT Kharag-

pur who got me excited about research and who continue to provide encouragement. Fi-

nally, I would like to thank my friends for their company, and my (extended) family for

unconditional support and understanding over the years.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Protocol Derivation System 7

2.1 Derivation of the STS Family . 8

2.1.1 Components . 9

2.1.2 Composition . 10

2.1.3 Refinements . 10

2.1.4 Transformations . 12

2.1.5 The Derivation . 14

2.1.6 Other Issues . 22

3 Protocol Composition Logic 24

3.1 Cord Calculus . 25

3.2 Protocol Logic . 27

3.2.1 Syntax . 27

3.2.2 Semantics . 29

3.3 Proof System . 30

3.3.1 Axioms for Protocol Actions . 30

3.3.2 Axioms relating Atomic Predicates 31

3.3.3 Modal Axioms and Rules . 31

viii

3.3.4 Axioms and Rules for Temporal Ordering 34

3.3.5 The Honesty Rule . 34

3.3.6 Soundness Theorem . 37

4 PCL Proof Methods 38

4.1 Compositional Proof Method . 38

4.1.1 Composition Theorems . 40

4.1.2 Illustrative Example . 44

4.2 Abstraction-Refinement Proof Method . 54

4.2.1 Cords and Protocol Logic with Function Variables 55

4.2.2 Abstraction and Refinement Methodology 56

4.2.3 Illustrative Examples . 58

4.2.4 Protocol Logic Extensions . 70

5 Complexity-Theoretic Foundations for PCL 73

5.1 Protocol Syntax . 74

5.2 Logic Syntax . 76

5.3 Proof System . 77

5.4 Example . 79

5.5 Protocol Execution . 79

5.6 Computational Semantics . 83

6 Unifying Compositional Protocol Security Definitions 88

6.1 Process Calculus . 91

6.1.1 Equational Principles . 92

6.1.2 Buffers, dummy adversaries, and asynchronous communication . . 94

6.2 Security Definitions . 95

6.3 Black-box Simulatability and Universal Composability 99

6.4 Process Equivalence and Black-box Simulatability 100

6.5 Applications to specific process calculi . 103

6.5.1 Probabilistic Poly-time Process Calculus 104

6.5.2 Spi-Calculus and Applied π-Calculus 108

ix

7 Related Work 110

7.1 Proving security properties of network protocols 110

7.2 Systematic design of secure network protocols 111

7.3 Secure protocol composition . 112

7.4 Computationally sound symbolic protocol analysis 115

8 Conclusions and Future Work 116

Bibliography 120

A Cord Calculus 133

A.1 Terms, Actions, Strands and Cords . 133

A.2 Cord Spaces, Agents and Processes . 135

A.3 Protocols . 140

A.3.1 Intruder roles . 141

A.3.2 Buffer cord . 141

A.3.3 Configurations and runs . 141

A.3.4 Events and traces . 142

A.3.5 Protocol properties . 142

B Semantics of Protocol Logic 144

C Soundness of Axioms and Proof Rules 147

C.1 Axioms for protocol actions . 147

C.2 Possession axioms . 149

C.3 Encryption and signature . 150

C.4 Uniqueness of Nonces . 151

C.5 Subterm relationship . 151

C.6 Modal axioms . 152

C.7 Temporal ordering of actions . 152

C.8 Axioms for Diffie-Hellman key exchange 153

C.9 Generic rules . 154

C.10 Sequencing rule . 154

x

C.11 The Honesty rule . 155

C.12 Composition theorems . 155

xi

List of Tables

3.1 Syntax of the logic . 28

3.2 Axioms for protocol actions . 30

3.3 Basic Axioms . 32

3.4 Modal Axioms and Rules . 33

3.5 Axioms and rules for temporal ordering 35

4.1 Diffie-Hellman Axioms . 47

4.2 Deductions of X̂ executing Init role of Challenge-Response Protocol . . . 52

4.3 Deductions of X̂ executing Init role of CR′ protocol 53

4.4 Deductions of Â executing InitCR role 71

4.5 Computes Axioms . 72

5.1 Syntax of protocol terms and actions . 75

5.2 Syntax of the logic . 76

5.3 Fragment of the proof system . 78

6.1 Equivalence Principles . 93

6.2 Black-Box Simulatability implies Universal Composability (Synchronous

Communication) . 99

6.3 Universal Composability implies Black-Box Simulatability (Synchronous

Communication) . 100

6.4 Universal Composability implies Black-Box Simulatability (Asynchronous

Communication) . 102

xii

6.5 Black-Box Simulatability implies Process Equivalence (Asynchronous Com-

munication) . 103

A.1 Syntax of terms, actions and strands . 134

A.2 Basic reaction steps . 136

xiii

List of Figures

2.1 An example of a binding transformation 12

2.2 An example of a cookie transformation . 13

2.3 Derivation graph of the STS protocol family 15

3.1 ISO-9798-3 as arrows-and-messages . 26

3.2 Cords for ISO-9798-3 . 26

4.1 Illustrating the Methodology . 59

4.2 Instantiations of the Challenge-Response template 62

4.3 Protocol that is an instantiation of both CR and ENC templates 65

4.4 Instantiations of authenticated key-exchange templates 68

6.1 Universal Composability . 96

6.2 Black Box Simulatability . 97

6.3 Process Equivalence . 98

6.4 Universal Composability implies Black Box Simulatability: Proof Sketch . 101

xiv

Chapter 1

Introduction

Protocols that enable secure communication over an untrusted network constitute an im-

portant part of the current computing infrastructure. Common examples of such protocols

are SSL [53], TLS [44], Kerberos [106], and the IPSec [73] and IEEE 802.11i [1] protocol

suites. SSL and TLS are used by internet browsers and web servers to allow secure transac-

tions in applications like online banking. The IPSec protocol suite provides confidentiality

and integrity at the IP layer and is widely used to secure corporate VPNs. IEEE 802.11i

provides data protection and integrity in wireless local area networks, while Kerberos is

used for network authentication.

The design and security analysis of such network protocols presents a difficult prob-

lem. In several instances, serious security vulnerabilities were uncovered in protocols many

years after they were first published or deployed [105, 59, 1, 16, 104, 68]. While some of

these attacks rely on subtle properties of cryptographic primitives, a large fraction can be

traced to intricacies in designing protocols that are robust in a concurrent execution setting.

To further elaborate this point, let us consider the concrete example of the SSL protocol.

In SSL, a client typically sets up a key with a web server. That key is then used to protect

all data exchanged between them. A single client can simultaneously engage in sessions

with multiple servers and a single server concurrently serves many clients. Let us consider

a scenario in which all network traffic is under the control of the adversary. In addition, the

adversary may also control some of the clients and servers. The protocol should guaran-

tee certain security properties for honest agents even in such an adversarial environment.

1

2 CHAPTER 1. INTRODUCTION

Specifically, if an honest client executes an SSL session with an honest server, the attacker

should not be able to recover the exchanged key. This is called the key secrecy property.

Furthermore, an attacker should not be able to fool an honest client into believing that she

has completed a session with an honest server unless that is indeed the case. This property

is called authentication. The security proof that SSL does indeed provide these guaran-

tees, even when the cryptography is perfect, turns out to be far from trivial [108, 60]. The

central problem is ensuring that the attacker cannot combine data acquired from a possibly

unbounded number of concurrent sessions to subvert the protocol goals.

Over the last two decades, a variety of methods and tools have been developed for an-

alyzing the security guarantees provided by network protocols. The main lines of work

include specialized logics [24, 121, 55], process calculi [6, 3, 77, 116] and tools [89, 119],

as well as theorem-proving [110, 109] and model-checking methods [79, 102, 117, 118] us-

ing general purpose tools. (The cited papers are representative but not exhaustive; see [91]

for a more comprehensive survey.) There are several points of difference among these ap-

proaches. While most model-checking tools can only analyze a finite number of concurrent

sessions of a protocol, some of the logics, process calculi, and theorem-proving techniques

yield protocol security proofs without bounding the number of sessions. With the exception

of the BAN family of logics [24], most approaches involve explicit reasoning about possi-

ble attacker actions. Finally, while security properties are interpreted over individual traces

in the majority of these methods, in the process calculi-based techniques, security is defined

by an equivalence relation between a real protocol and an ideal protocol, which is secure

by construction. Inspite of these differences, all of these approaches use the same symbolic

model of protocol execution and attack. This model seems to have developed from posi-

tions taken by Needham-Schroeder [105], Dolev-Yao [47], and much subsequent work by

others. In this model, the adversary is allowed to choose non-deterministically among the

set of possible actions; messages are represented as abstract terms, not sequences of bits;

and encryption and other cryptographic primitives are modelled in an abstract black-box

manner. This idealization has been a major enabling factor in the development of the above

mentioned array of tools and techniques.

As this research area comes of age, several important open problems have been iden-

tified (cf. [91]). One significant problem has to do with secure composition of protocols.

3

Many modern protocols like IKEv2 [71], IEEE 802.11i [1], and Kerberos [106] comprise of

several different sub-protocols and modes of operation. The challenge is to develop proof

methods that allow security proofs of such composite protocols to be built up by combin-

ing independent proofs of their parts. Composition is a difficult problem in security since

a component may reveal information that does not affect its own security but may degrade

the security of some other component in the system. A second important problem pertains

to the model of protocol execution and attack used while carrying out the security analysis

task. As mentioned before, almost all extant approaches for symbolic protocol analysis use

an idealized model where cryptography is assumed to be perfect. This idealization makes

the protocol analysis problem more amenable to automation. However, the abstraction de-

tracts from the fidelity of the analysis since attacks arising from the interaction between

the cryptosystem and the protocol lie outside the scope of this model. The goal then is to

develop logical methods for protocol analysis with associated soundness theorems, which

guarantee that a completely symbolic analysis or proof has an interpretation in the standard

complexity-theoretic model of modern cryptography. At an informal level, this means that

a machine-checkable or generated proof should carry the same meaning as a hand-proof

done by a cryptographer. This turns out to be a difficult problem since the security defi-

nitions of cryptographic primitives and protocols involve complex probability spaces and

quantification over all probabilistic polynomial time attackers. In this dissertation, we ini-

tiate a program and take several steps towards solving these two problems. In the following

paragraphs, we summarize our main results and sketch several directions for future work.

We have developed a framework consisting of two formal systems: Protocol Deriva-

tion System (PDS) and Protocol Composition Logic (PCL). Within the protocol analysis

spectrum, this work can be placed in the category of specialized logics. PDS supports

syntactic derivations of complex protocols, starting from basic components, and combin-

ing or extending them using a sequence of composition, refinement, and transformation

operations. PCL is a Floyd-Hoare style logic [52, 64] that supports axiomatic proofs of

protocol properties. The eventual goal is to develop proof methods for PCL for every

derivation operation in PDS, thereby enabling the parallel development of protocols and

their security proofs. In this dissertation, we present proof methods for reasoning about

protocol composition and a class of protocol refinements. The composition theorems are

4 CHAPTER 1. INTRODUCTION

formulated and proved by adapting ideas from the assume-guarantee paradigm for reason-

ing about distributed systems. PDS and PCL have been successfully applied to a number of

industrial network security protocols, in several instances identifying serious security vul-

nerabilities. Specifically, PCL has been applied to the IEEE 802.11i protocol suite (which

includes TLS as a component) [60] and to the IETF GDOI protocol for secure group com-

munication [92]. The second case study identified a previously undiscovered flaw in the

protocol. In ongoing work, PCL is being used to analyze IKEv2 [71], IEEE 802.16e [2],

Kerberos [106], and Mobile IPv6 [70] protocols. While the semantics of PCL is defined

with respect to the idealized, symbolic model, we also present complexity-theoretic foun-

dations and prove a soundness theorem for a variant of PCL which we call Computational

PCL. The soundness proof uses standard proof techniques from cryptography, in particular,

complexity-theoretic reductions. Although the basic form of the logic remains unchanged,

there are certain important differences involving the interpretation of implication in terms

of conditional probability and the semantics of the predicates used to capture secrecy prop-

erties.

The final result in the dissertation spans both the problems. An alternative way of

specifying and reasoning about protocol composition is through equivalence or simulation

between the real protocol and an ideal protocol, which is secure by construction. We prove

that, under reasonable assumptions about the communication model, three simulation-

based definitions for protocol security–universal composability, black-box simulatability,

and process observational equivalence–express the same properties of a protocol. The

proofs are axiomatic and are carried out using process calculus equational principles. Since

these equational principles are rather general, the proofs carry over to a number of process

calculi, in particular, the probabilistic poly-time process calculus, whose execution model

is consistent with the complexity-theoretic model of cryptography. We also observe certain

important differences between the composition paradigm of universal composability, and

the assume-guarantee paradigm of PCL.

Although these results represent significant advances in the state-of-the-art, we expect

that it will take several people a number of years to fully accomplish the goals of this pro-

gram. One current effort seeks to extend and further refine PCL [10]. A second direction

is to extend PCL to reason about security in different threat models. Threat models can

5

differ on several respects, in particular, the computational capabilities of protocol princi-

pals and adversaries, and the degree of control the adversary has over the network. For

example, in the symbolic model the adversary’s computational abilities are restricted to a

fixed set of actions while in the complexity-theoretic model of cryptography, she can carry

out any probabilistic polynomial time computation. Also, in applications like Mobile IPv6,

it might be reasonable to assume that the adversary does not have access to all commu-

nication paths over the network. A third direction is to continue the work on formalizing

PDS to develop a systematic theory of protocol design and to apply it during the design

phase of a standards-track protocol. Tool implementation efforts for PCL and PDS are also

underway. Finally, the results in this dissertation provide a good starting point for a deeper

investigation of the composition problem in computer security and cryptography. The im-

portance of compositional methods in the design and analysis of secure systems is now

widely recognized (cf. [126]). However, there is no comprehensive foundational theory for

secure composition of secure systems and software. We believe that the assume-guarantee

paradigm developed for PCL might be applicable to these other kinds of security mecha-

nisms. In the field of cryptography also, the composition problem has received significant

attention. One current approach to this problem is the framework of universal composabil-

ity [26, 114]. The universal composability condition provides strong composition guaran-

tees: a primitive or protocol that satisfies this condition retains its security guarantees in

any environment in which it is used. In contrast, the assume-guarantee paradigm of PCL

only allows conditional composability: a protocol is secure only in an environment which

satisfies a certain set of invariant assumptions associated with the protocol. The ability to

reason about protocols under assumptions about the way they will be used offers greater

flexibility and appears essential for developing modular proofs about certain classes of pro-

tocols. In addition, a number of impossibility results about the realizability of UC-secure

primitives and protocols [26, 29, 40] indicates that the UC condition may be too stringent

to apply to certain protocols of interest.

The rest of the dissertation is organized as follows. Chapter 2 presents the protocol

derivation system. Chapter 3 describes the syntax, semantics, and proof system of PCL.

Chapter 4 presents the proof methods in PCL associated with the protocol derivation op-

erations in PDS. The composition theorems are presented in Section 4.1 while the proof

6 CHAPTER 1. INTRODUCTION

method for reasoning about protocol refinements is presented in Section 4.2. Chapter 5

presents complexity-theoretic semantics for a variant of PCL and an associated soundness

theorem for its proof system. Chapter 6 presents the results on equivalence between var-

ious simulation based security definitions. Related work is discussed in Section 7. Final

conclusions and directions for future work are presented in Section 8.

Chapter 2

Protocol Derivation System

Many researchers and practitioners working in the field of protocol security recognize that

common authentication and key exchange protocols are built using an accepted set of stan-

dard concepts. The common building blocks include Diffie-Hellman key exchange, nonces

to avoid replay, certificates from an accepted authority to validate public keys, and en-

crypted or signed messages that can only be created or read by identifiable parties. An

informal practice of presenting protocols incrementally, starting from simple components

and extending them by features and functions, is used in [46], with efforts to formalize the

practice appearing in [23]. More recently, Bellare, Canetti and Krawczyk [19], for exam-

ple, have studied protocol transformations that add authentication to a protocol scheme.

However, there is no comprehensive theory about how each standard protocol part works,

and how properties of a compound protocol can be derived from properties of its parts. In

this chapter, we summarize some steps we have taken towards developing such a theory.

Our framework for deriving security protocols consists of a set of basic building blocks

called components and a set of operations for constructing new protocols from old ones.

These operations may be divided into three different types: composition, refinement and

transformation. A component is a basic protocol step or steps, used as a building block

for larger protocols. Diffie-Hellman key exchange and challenge-response are examples of

basic components. A composition operation combines two protocols. Parallel composition

and sequential composition are two examples of composition operations. A refinement

operation acts on message components of a single protocol. For example, replacing a

7

8 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

plaintext nonce by an encrypted nonce is a refinement. A refinement does not change

the number of messages or the basic structure of a protocol. A transformation operates

on a single protocol, and may modify several steps of a protocol by moving data from

one message to another, combining steps, or inserting one or more additional steps. For

example, moving data from one protocol message to an earlier message (between the same

parties) is a transformation.

In principle, there may be many possible protocol refinements and transformations. Our

goal in this chapter is to show how protocol composition, refinement, and transformation

may be used by working out some examples. In the next section, we examine the structure

of a set of key exchange protocols (which we call the STS family) to illustrate the use

of this method. Among the derived protocols are STS [46], the standard signature-based

challenge-response protocol [93], JFKi, JFKr, ISO-9798-3 [8], and the core of the IKE

protocol [59].

2.1 Derivation of the STS Family

The STS family includes protocols like IKE which have been deployed on the Internet

and JFKi and JFKr which were considered by IETF as replacements for IKE. The security

properties relevant to the STS family of protocols include key secrecy, mutual authentica-

tion, denial-of-service protection, identity protection and computational efficiency. Com-

putational efficiency is achieved by reusing Diffie-Hellman exponentials across multiple

sessions.

We begin by describing the basic components, and the composition, refinement and

transformation operations used in deriving the STS family of key exchange protocols. The

components and operations are presented tersely, with additional intuition and explanation

given where they are used.

In informally describing the derivation system, we use a standard messages-and-arrows

notation for protocol steps. Experience suggests that this simple notation is useful for

conveying some of the central ideas. However, the reader should bear in mind that, in

addition, a protocol involves initial conditions, communication steps, and internal actions.

When we derive a protocol, the derivation step may act on the initial conditions, network

2.1. DERIVATION OF THE STS FAMILY 9

messages, or internal actions.

2.1.1 Components

A protocol component consists of a set of roles (e.g., initiator, responder, server), where

each role has a sequence of inputs, outputs and protocol actions. Intuitively, a principal

executing a role of the protocol starts in a state where it knows the inputs (e.g. its private

signing key), executes the prescribed actions (e.g., generates nonces, sends or receives

messages) and then produces the outputs (e.g., a shared key if the protocol is a key exchange

protocol). In this derivation, we use Diffie-Hellman key exchange and a signature-based

authenticator as basic components.

Diffie-Hellman component, C1

The Diffie-Hellman protocol [45] provides a way for two parties to set up a shared key (g ir)

which a passive attacker cannot recover. There is no authentication guarantee: the secret

is shared between two parties, but neither can be sure of the identity of the other. Our

component C1 contains only the internal computation steps of the Diffie-Hellman protocol.

The initiator and responder role actions are given below.

I: generates random value i and computes gi (for previously agreed base b)

R: generates random value r and computes gr (for previously agreed base b)

In this component no messages are sent; the exponentials are considered to be the output

of this protocol fragment.

Signature-based authenticator, C2

The signature-based challenge-response protocol shown below is a standard mechanism for

one-way authentication (see Section 10.3.3 of [93])

I → R : m

R→ I : SIGR(m)

It is assumed that m is a fresh value or nonce and that the initiator, I , possesses the public

key certificate of responder, R, and can therefore verify the signature.

10 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

2.1.2 Composition

The composition operation used is sequential composition of two protocol components with

term substitution. The precise definition of this operation is in Section 4.1.1. Intuitively, the

roles of the composed protocol have the following structure: the input sequence is the same

as that of the first component and the output is the same as that of the second component;

the actions are obtained by concatenating the actions of the first component with those of

the second (sequential composition) with an appropriate term substitution—the outputs of

the first component are substituted for the inputs of the second.

2.1.3 Refinements

While defining refinements, we use the notation a ⇒ b to indicate that some instance of

message component a in the protocol should be replaced by b.

Refinement R1 SIGX(m) ⇒ EK(SIGX(m)), where K is a key shared with the peer.

The purpose of this refinement is to provide identity protection against passive attackers.

In all the protocols that we consider here, everything signed is public. So, an attacker can

verify guesses at identities of a principal if the signature is not encrypted.

Refinement R2 SIGX(m)⇒ SIGX(HMACK(m, IDX)), where K is a key shared

with the peer. While the signature by itself proves that this term was generated by X ,

the keyed hash in addition proves that X possesses the key K. This additional property is

crucial for mutual authentication guaranteed by IKE. It is further elaborated in the deriva-

tion below.

Refinement R3 SIGX(m)⇒ SIGX(m), HMACK(m, IDX), where K is a key shared

with the peer. This refinement serves the same purpose as R2 and is used to derive the core

of the JFKr protocol.

Refinement R4 SIGX(m)⇒ SIGX(m, IDY), where Y is the peer. It is assumed thatX

possesses the requisite identifying information for Y , e.g., Y ′s public key certificate, before

2.1. DERIVATION OF THE STS FAMILY 11

the protocol is executed. This assumption can be discharged if X receives Y ′s identity

in an earlier message of the protocol. In public-key based challenge-response protocols,

the authenticator should identify both the sender and the intended recipient. Otherwise,

the protocol is susceptible to a person-in-the-middle attack. Here, the signature identifies

the sender and the identity inside the signature identifies the intended recipient. In an

encryption-based challenge-response protocol (e.g., Needham-Schroeder [105]), since the

public encryption key identifies the intended recipient, the sender’s identity needs to be

included inside the encryption. The original protocol did not do so, resulting in the property

discovered nearly twenty years later by Lowe [78].

Refinement R5 gx ⇒ gx, nx, where nx is a fresh value. In many Diffie-Hellman based

key exchange protocols, the Diffie-Hellman exponentials serve two purposes: (a) they pro-

vide the material to derive secret keys; (b) they provide the freshness guarantee for runs

required in order to prevent replay attacks. However, Diffie-Hellman exponentials are ex-

pensive to compute. This refinement makes participants exchange nonces in addition to

Diffie-Hellman exponentials, thereby offloading function (b) onto the nonces. The use of

nonces enables the reuse of exponentials across multiple sessions resulting in a more effi-

cient protocol. On the other hand, when exponents are reused, perfect forward secrecy is

lost. This tradeoff is offered both by JFKi and JFKr.

Refinement R6 SIGX(m) ⇒ SIGX(m), IDX , where IDX denotes the public key cer-

tificate of X . Since the other party may not possess the signature-verification key, it is

necessary to include the certificate along with the signature. Unlike refinements R1 and R5

above, which add properties to a protocol (identity protection and efficiency respectively),

this is an example of a refinement which discharges the assumption that the principals pos-

sess each other’s public key certificates before the session.

Refinement R7 EK(m)⇒ EK(m), HMACK′(role, EK(m)), where K and K ′ are keys

shared with the peer and role identifies the protocol role in which this term was produced

(initiator or responder). This refinement is used in the derivation of JFKr. Here, each

party includes a keyed hash of the encrypted signature and its own role (i.e., initiator or

12 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

responder) in addition to the signature. The hash serves the same purpose as in refinements

R2, R3. The protocol role is included inside the hash to prevent reflection attacks.

2.1.4 Transformations

Message component move, T1

This transformation moves a top-level field t of a message m to an earlier message m′,

where m and m′ have the same sender and receiver, and if t does not contain any data

freshly generated or received between the two messages. One reason for using this trans-

formation is to reduce the total number of messages in the protocol.

Binding, T2

Binding transformations generally add information from one part of a protocol to another in

order to “bind” the two parts in some meaningful way. The specific instance of this general

concept that we use here adds a nonce from an earlier message into the signed portion of a

later message, as illustrated in Figure 2.1.

I → R : m I → R : m
R→ I : n, SIGR(m) =⇒ R→ I : n, SIGR(n,m)
I → R : SIGI(n) I → R : SIGI(m,n)

Figure 2.1: An example of a binding transformation

We can understand the value of this transformation by considering the signature-based

authenticator, C2, described above. Protocol C2 provides one-sided authentication: after

executing the protocol, I is assured that the second message was generated byR in response

to the first message. However,R does not know the identity of I . Since the goal of a mutual

authentication protocol is to provide the authentication guarantee to both parties, it seems

likely that we can construct a mutual authentication protocol from two instances (executed

in opposite directions) of C2. However, the sequential composition of two runs of C2 does

not quite do the job, since neither party can be sure that the other participated in one of the

runs. If we take the protocol obtained by sequential composition of two instances of C2,

2.1. DERIVATION OF THE STS FAMILY 13

apply transformation T1 on nonce n to obtain the protocol on the left side of Figure 2.1, and

then apply the binding transformation to obtain the one on the right, the resulting protocol

with both nonces inside the signatures ensures that m and n belong to the same session.

We note, however, that the protocol on the right side of Figure 2.1 does not guarantee

mutual authentication in the conventional sense. Specifically, after I completes a session

with R, initiator I cannot be sure that R knows she has completed the same session with

I . The stronger guarantee may be achieved by including the peer’s identity inside the

signatures, as discussed further in Section 2.1.5. Also, note that our formal model does not

allow type confusion attacks, which is essential for the soundness of this transformation.

Cookie, T3

The purpose of the cookie transformation is to make a protocol resistant to blind Denial-of-

Service (DoS) attacks. Under certain assumptions, it guarantees that the responder does not

have to create state or perform expensive computation before a round-trip communication

is established with the initiator. The cookie transformation is described in detail in [43],

where it is derived using more primitive operations. Here, we only touch on the main idea.

I → R : m1 I → R : m1

R→ I : m2 R→ I : mc
2, HMACHKR

(m1, m
c
2)

I → R : m3 =⇒ I → R : m3, m1, m
c
2,

HMACHKR
(m1, m

c
2)

. . . R→ I : me
2

. . .

Figure 2.2: An example of a cookie transformation

An example of a cookie transformation is shown in Figure 2.2. The protocol on the

left hand side is a standard three message protocol in which after receiving message m1,

R creates state and replies with message m2. Clearly, this protocol is vulnerable to both

computation and memory DoS attacks. Now assume that the components of message m2

can be divided into two sets: those that can be computed without performing any expensive

operation (denoted by mc
2) and those that require expensive operations (denoted by me

2). In

the transformed protocol, upon receiving the first message, the responder R does not create

14 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

local state and does not perform any expensive computation. Instead, R sends an unforge-

able token (cookie) back to I which captures the local state, and resumes the protocol only

after the cookie is returned by I . Here the cookie is a keyed hash of message m1 and mc
2.

The key used for this purpose, HKR, is known only to R. Since expensive computation

and creation of state is deferred till it is established that the initiator can receive messages

at the IP address which it claimed as its own, the resulting protocol is resistant to blind DoS

attacks.

2.1.5 The Derivation

We now use the components and operations of the derivation system defined above to sys-

tematically derive the protocols in the STS family. The complete derivation graph is shown

in Figure 2.3. In what follows, we trace the derivations of the various protocols in the

graph. At each derivation step, we explain what property that step helps achieve.

Protocol P1 Obtained by sequential composition of two symmetric copies of component

C2.
I → R : m

R→ I : SIGR(m)

R→ I : n

I → R : SIGI(n)

This is the first step in constructing a mutual authentication protocol from two instances of

an unilateral authentication protocol. Here, it is assumed that m and n are fresh values and

that I and R possess each other’s public key certificates and so can verify the signatures.

Protocol P2 Obtained from protocol P1 by using transformation T1: the component of

message 3 is moved up to message 2.

I → R : m

R→ I : n, SIGR(m)

I → R : SIGI(n)

This refinement serves to reduce the number of messages in the protocol from 4 to 3.

2.1. DERIVATION OF THE STS FAMILY 15

C2
(Signature-based Authenticator)

C2;C2

��

C1
(Diffie-Hellman)

��

P1

T1

��
P2

T2

��
P3

R4

��

C1;P3 +3 P5

R4

��
R1

��
R2

��
R3

��

P4
C1;P4 +3 P16

(ISO-9798)

P6
(STS)

R5

��

P13
(IKE-core)

R5

��

P15
(JFKr-core)

P7
(STS+nonces)

R6

��

P14
(IKE-core+nonces)

P8
(STS+nonces+IDs)

T3

��
P9

(JFKi/JFKr-core+cookies)

R7

��
T1

��P10
(JFKr)

P11

R4

��
P12

(JFKi)

Figure 2.3: Derivation graph of the STS protocol family

16 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

Protocol P3 Obtained from protocol P2 by using the binding transformation, T2.

I → R : m

R→ I : n, SIGR(n,m)

I → R : SIGI(m,n)

After executing this protocol, I is assured that R generated the second message and more-

over that the message was freshly generated. However, as elaborated below, it would be

incorrect of I to conclude that R believes that she was talking to I . The source of the prob-

lem is that the authenticator does not indicate who the message was meant for. One way

to get around it is by applying refinement R4 mentioned in the previous section. There are

other ways too as we will see while proceeding with the derivation.

The following attack describes a scenario in which R and I hold different beliefs about

who they completed the session with. Attacker M intercepts and then forwards the first

two messages, obtaining nonces m and n. Then M blocks the final message from I and

substitutes SIGM(m,n). After these steps, I believes nonces m and n were exchanged

with R, but R believes the nonce m was generated by imposter M .

Protocol P5 Obtained by composing component C1 with protocol P3.

I → R : gi

R→ I : gr, SIGR(gr, gi)

I → R : SIGI(g
i, gr)

The nonces m and n were instantiated to Diffie-Hellman exponents gi and gr. The as-

sumption that m and n are fresh values is still valid as long as i and r are fresh. This

is an example of composition by term substitution. Intuitively, the actions that any prin-

cipal carries out in P5 is the sequential composition of the actions that she carries out in

C1 and in P3, except that instead of sending and receiving nonces, she sends and receives

Diffie-Hellman exponentials. That is why it makes sense to regard term substitution as a

composition operation. Protocol P5 possesses all the properties of protocol P3. In addi-

tion, whenever I completes a session supposedly with R, then if R is honest, then I and R

share a secret, gir. Note that since the person-in-the-middle attack described above is still

possible, R may not believe that she has a shared secret with I .

2.1. DERIVATION OF THE STS FAMILY 17

After protocol P5, four different derivation paths can be seen in Figure 2.3. The first

path includes STS, JFKi and JFKr; the second path includes the core of IKE; the third

path includes a protocol that forms the core of IKE-sigma [75] and JFKr; the fourth path

includes the ISO-9798-3 protocol. We now describe these derivation paths one by one.

Path 1: STS, JFKi and JFKr

Protocol P6 Obtained by applying refinementR1 to protocolP5, whereK is a key derived

from the Diffie-Hellman secret. This is the STS protocol.

I → R : gi

R→ I : gr, EK

(

SIGR(gr, gi)
)

I → R : EK

(

SIGI(g
i, gr)

)

In addition to the properties of P5, P6 provides identity protection against passive attackers.

As mentioned before, refinement R1 is geared towards adding this property to the protocol

on which it is applied. P6 also provides a mutually authenticated shared secret. The person-

in-the-middle attack described while presenting protocol P3 (and which is applicable to

protocol P5 too) does not work anymore since an attacker cannot compute the encryption

key, K, which depends on the Diffie-Hellman secret, gir, and hence cannot replace I’s

signature in the third message by her own. However, Lowe describes another attack on this

protocol in [79]. It is not quite clear whether that attack breaks mutual authentication.

Protocol P7 Obtained by applying refinement R5 to protocol P6.

I → R : gi, ni

R→ I : gr, nr, EK

(

SIGR(gr, nr, g
i, ni)

)

I → R : EK

(

SIGI(g
i, ni, g

r, nr)
)

P7 retains all the properties of P6 except perfect forward secrecy. As mentioned while

describing refinement R5, the use of fresh nonces enables the reuse of Diffie-Hellman ex-

ponentials across multiple sessions resulting in a more computationally efficient protocol.

18 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

Protocol P8 Obtained by applying refinement R6 to protocol P7.

I → R : gi, ni

R→ I : gr, nr,

EK

(

SIGR(gr, nr, g
i, ni), IDR

)

I → R : EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

By applying refinement R6 to P7, no new properties are introduced. Instead, the assump-

tion that the protocol principals possessed each other’s public key certificates apriori is

discharged by explicitly exchanging certificates alongside the signatures.

Protocol P9 Obtained by applying the cookie transformation, T3, to protocol P8.

I → R : gi, ni

R→ I : gr, nr,HMACHKR
(gr, nr, g

i, ni)

I → R : gi, ni, g
r, nr,HMACHKR

(gr, nr, g
i, ni),

EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

R→ I : EK

(

SIGR(gr, nr, g
i, ni), IDR

)

The cookie transformation ensures that in addition to the properties of protocol P8, this

protocol also possesses the additional property of resistance to blind Denial-of-Service

attacks.

At this point, we have derived a protocol that provides key secrecy, mutual authentica-

tion, identity protection (for initiator against passive attackers and for responder against

active attackers), DoS protection and computational efficiency, i.e., all the stated security

properties for this family of protocols. Both JFKi and JFKr are obtained from P9 and only

differ in the form of identity protection that they offer.

Path 1.1: JFKr

Protocol P10 Obtained by applying refinement R7 to P9. This is essentially JFKr. We

ignore some of the message fields (e.g., the security association and the group identifying

2.1. DERIVATION OF THE STS FAMILY 19

information) which can be added using two more refinements.

I → R : gi, ni

R→ I : gr, nr,HMACHKR
(gr, nr, g

i, ni)

I → R : gi, ni, g
r, nr,HMACHKR

(gr, nr, g
i, ni),

EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

,

HMACK′

(

I, EK

(

SIGI(g
i, ni, g

r, nr), IDI

))

R→ I : EK

(

SIGR(gr, nr, g
i, ni), IDR

)

,

HMACK′

(

R,EK

(

SIGR(gr, nr, g
i, ni), IDR

))

P10 retains all the properties of P9. The keyed hash of the encrypted signature appears to

serve the same purpose as the encryption of the signature in protocol P6. It guarantees that

since the computation of the keysK andK ′ requires knowledge of gir, the adversary cannot

launch the person-in-the-middle attack described while presenting protocol P3, since she

cannot compute the encrypted signature and the keyed hash.

Path 1.2: JFKi

Protocol P11 Obtained by applying transformation T1 to protocol P9.

I → R : gi, ni

R→ I : gr, nr, IDR,HMACHKR
(gr, nr, g

i, ni)

I → R : gi, ni, g
r, nr,HMACHKR

(gr, nr, g
i, ni),

EK

(

SIGI(g
i, ni, g

r, nr), IDI

)

R→ I : EK

(

SIGR(gr, nr, g
i, ni)

)

The message component IDR is moved from message 4 in P9 to message 2 here. The

reason for applying this transformation becomes clear in the next step when the principals

include the peer’s identity inside the signatures. Since I’s signature is part of the third mes-

sage of the protocol, she must possess R’s identity before she sends out that message. This

protocol retains all the properties of P9 except for the fact that the form of identity protec-

tion is different. Unlike P9, here the responder’s identity is not protected. The initiator’s

identity is still protected against active attackers.

Protocol P12 Obtained by applying refinement R4 to protocol P11. This is JFKi (except

for one additional signature in the second message which can be added using one more

20 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

transformation). As with JFKr, some of the message fields which do not contribute to the

core security property are ignored.

I → R : gi, ni

R→ I : gr, nr, IDR,HMACHKR
(gr, nr, g

i, ni)

I → R : gi, ni, g
r, nr,HMACHKR

(gr, nr, g
i, ni),

EK

(

SIGI(g
i, ni, g

r, nr, IDR), IDI

)

R→ I : EK

(

SIGR(gr, nr, g
i, ni, IDI)

)

The refinement added the peer’s identities inside the signatures. IDR and IDI are added

inside I’s and R’s signatures in message 3 and message 4 respectively. Including the iden-

tities inside the signatures obviates the attack described while presenting protocol P3 and

Lowe’s attack on STS [79]. P12 retains all the properties of P11.

Path 2: IKE

We now consider the second path starting from protocol P5. This path includes two proto-

cols closely related to IKE [59].

Protocol P13 Obtained by applying refinement R2 to protocol P5. This protocol has been

described as the core for IKE in [8].

I → R : gi

R→ I : gr, SIGR

(

HMACK(gr, gi, IDR)
)

I → R : SIGI

(

HMACK(gi, gr, IDI)
)

Instead of just signing the Diffie-Hellman exponentials, each principal now signs a keyed

hash of the exponentials and their own identities. Since the key used is derived from the

Diffie-Hellman secret, gir, which is known only to I and R, an adversary cannot launch

the person-in-the-middle attack described while presenting P3 and to which P5 is also sus-

ceptible. This protocol therefore provides both mutual authentication and a shared secret

between I and R.

2.1. DERIVATION OF THE STS FAMILY 21

Protocol P14 Obtained by applying refinement R5 to protocol P13.

I → R : gi, ni

R→ I : gr, nr, SIGR

(

HMACK(gr, nr, g
i, ni, IDR)

)

I → R : SIGI

(

HMACK(gi, ni, g
r, nr, IDI)

)

This step in the derivation exactly parallels the step in the derivation of JFKi and JFKr

where, in addition to Diffie-Hellman exponentials, nonces where exchanged. The purpose,

as before, is to allow reuse of Diffie-Hellman exponentials across multiple sessions re-

sulting in a more efficient protocol. The tradeoff is that perfect forward secrecy is lost in

the process. Note that the original IKE specification did not stipulate the reuse of Diffie-

Hellman exponentials across sessions.

Path 3: JFKr/SIGMA-core

The third path starting from protocol P5 consists of a protocol that has been described as

the core for JFKr and IKE-SIGMA in [8].

Protocol P15 Obtained by applying refinement R3 to protocol P5.

I → R : gi

R→ I : gr, SIGR(gr, gi),HMACK(gr, gi, IDR)

I → R : SIGI(g
i, gr),HMACK(gi, gr, IDI)

This protocol is very similar to protocol P13 and possesses exactly the same properties

(mutual authentication and shared secret). The only difference is that instead of signing the

keyed hash, the principals send the hash separately. Since computation of the hash requires

possession of the Diffie-Hellman secret, gir, which is known only to I and R, an adversary

cannot launch the person-in-the-middle attack described while presenting P3 and to which

P5 is also susceptible.

22 CHAPTER 2. PROTOCOL DERIVATION SYSTEM

Path 4: ISO-9798-3

Protocol P16 Obtained by applying refinement R4 to protocol P5. This is the ISO-9798-3

protocol.
I → R : gi

R→ I : gr, SIGR(gr, gi, IDI)

I → R : SIGI(g
i, gr, IDR)

This protocol provides a means for I and R to set up a mutually authenticated shared

secret. The person-in-the-middle attack possible on protocol P5 (and described while pre-

senting protocol P3) is not possible in this protocol since the principals indicate who the

authenticated message is intended for by including the identity of the intended recipient in-

side the signature. Thus the attacker M cannot forward the second message of the protocol

that R sends to her to I since the signature will contain IDM and not IDI .

Alternative Derivation of the ISO-9798-3 Protocol

Now we present a derivation of protocol P16, ISO-9798-3 .

Protocol P4 Obtained by applying refinement R4 to protocol P3. This is the standard

challenge-response protocol.

I → R : m

R→ I : n, SIGR(n,m, IDI)

I → R : SIGI(m,n, IDR)

P3 is refined so that the peer’s identity is included inside the signatures. Consequently, the

person-in-the-middle attack on P3 doesn’t succeed againstP4. P4 therefore provides mutual

authentication. Protocol P16 is now derived by composing component C1 with protocol P4

in exactly the same way that P5 was derived.

2.1.6 Other Issues

Commutativity of Rules

As suggested by protocol P16 above, many protocols have several different derivations, ob-

tained by applying compositions, refinements and transformations in different orders. Such

2.1. DERIVATION OF THE STS FAMILY 23

commutativities of the derivation steps are usually justified by the fact that the properties

that they realize are logically independent. For instance, the refinements R1 (encrypting

the signatures) and R5 (adjoining nonces to the exponentials) commute, because the cor-

responding properties - identity protection and reusability of exponentials - are logically

independent.

Generalization of Refinements

In this introductory presentation, we often selected the refinements leading to the desired

properties by a shortest path. Building a library of reusable derivations of a wider family

of protocols would justify more general rules. For example, refinement R1 is a special case

of a general refinement: m ⇒ EK(m), where m is any term and K is a shared key. The

purpose of this refinement would be to remove the term m from the set of publicly known

values.

Chapter 3

Protocol Composition Logic

Protocol Composition Logic (PCL) is a logic for proving security properties of network

protocols. A preliminary version of PCL was presented in [49, 50]. In subsequent work [35,

36, 39, 37, 60], we have significantly extended the logic and developed new proof methods.

Currently, we are able to prove authentication and secrecy properties of common security

protocols by derivations of twenty to sixty lines of proof. The reason for this succinctness

is that the proof rules of the logic state general properties of protocol traces that can be

reused for many different protocols. The logic is different from previous “belief” logics

like BAN [24] and from explicit reasoning about protocol participants and the intruder as

in Paulson’s Inductive Method [110]. In a sense, the goal of this work was to retain the

readability and ease of use of BAN logic while providing the same degree of assurance in

the security of protocols as Paulson’s Inductive Method.

The logic is designed around a process calculus with actions for each protocol step.

Protocol actions are annotated with assertions in a manner resembling dynamic logic for

sequential imperative programs. The semantics of our logic is based on sets of traces

of protocol executions, following the standard symbolic model of protocol execution and

attack. Security proofs involve local reasoning about properties guaranteed by individual

actions and global reasoning about actions of honest principals who faithfully follow the

protocol. One central idea is that assertions associated with an action will hold in any

protocol execution that contains this action. This observation gives us the power to reason

about all possible runs of the protocol without explicitly reasoning about possible steps

24

3.1. CORD CALCULUS 25

carried out by the adversary. The soundness of most of the axioms and inference rules

are based on this observation. A second important insight is that since honest principals

faithfully follow the protocol, invariants for the programs for the roles of the protocol also

hold in all runs, irrespective of the intruder actions. This idea is codified in the proof system

in the honesty rule.

The rest of this section is organized as follows. Section 3.1 describes cord calculus,

the process language for representing protocols. The syntax and semantics of PCL are

presented in Section 3.2. The proof system and soundness theorem are presented in Sec-

tion 3.3.

3.1 Cord Calculus

One important part of security analysis involves understanding the way honest agents run-

ning a protocol will respond to messages from a malicious attacker. The common informal

arrows-and-messages notation is generally insufficient, since it only presents the executions

(or traces) of the protocol that occur when there is no attack. In addition, our protocol logic

requires more information about a protocol than the set of protocol executions obtained

from honest and malicious parties; we need a high-level description of the program exe-

cuted by each agent performing each protocol role so that we know not only which actions

occur in a run, but why they occur.

As explained in [49], we used a form of process calculus that we call cords. Cords form

an action structure [96, 97, 111], based on π-calculus [99], and related to spi-calculus [4].

The cords formalism is also similar to the approach of the Chemical Abstract Machine

formalism [22], in that the communication actions can be viewed as reactions between

“molecules”. Cord calculus serves as a simple “protocol programming language” which

supports our Floyd-Hoare style logical annotations, and verifications in an axiomatic se-

mantics. Cord calculus is summarized in Appendix A.

In this section, we show how protocols are represented in cord calculus with an exam-

ple. Figure 3.1 shows the ISO-9798-3 protocol [66] in the informal arrows-and-messages

notation. The roles of the same protocol are written out as cords in Figure 3.2, writing X̂

and Ŷ for the agents executing cords Init and Resp, respectively. The arrows between the

26 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

A •

ga

��

• +3 •

{|ga,gb,B|}
A

��
B • +3 •

gb,{|ga,gb,A|}
B

OO

•

Figure 3.1: ISO-9798-3 as arrows-and-messages

Init = [(νx)〈X̂, Ŷ , gx〉

��

(Ŷ , X̂, y, z)(z/{|gx, y, X̂|}Y) 〈X̂, Ŷ , {|gx, y, Ŷ |}X〉

��

]

Resp = [(X̂, Ŷ , x)(νy) 〈Ŷ , X̂, gy, {|x, gy, X̂|}Y 〉

OO

(X̂, Ŷ , z)(z/{|x, gy, Ŷ |}X)]

Figure 3.2: Cords for ISO-9798-3

cords in the figure are meant to show how messages sent by one cord may be received by

the other, but they are not part of the cords formalism. In this example, the protocol con-

sists of two roles, the initiator role and the responder role. The sequence of actions in the

initiator role are given by the cord Init in Figure 3.2. In words, the actions of a principal

executing cord Init are: generate a fresh random number; send a message with the Diffie-

Hellman exponential of that number to the peer, Ŷ ; receive a message with source address

Ŷ ; verify that the message contains Ŷ ’s signature over data in the expected format; and

finally, send another message to Ŷ with the initiator’s signature over the Diffie-Hellman

exponential that she sent in the first message, the data she received from Ŷ (which should

be a Diffie-Hellman exponential generated by Ŷ) and Ŷ ’s identity. The notations (νx), 〈t〉,

(x) refer respectively to the actions of nonce generation, sending a term and receiving a

message. Formally, a protocol is given by a finite set of closed cords, one for each role

of the protocol. In addition to the sequence of actions, a cord has static input and out-

put parameters (see Appendix A for detailed definitions and Section 4.1.2 for a complete

example).

3.2. PROTOCOL LOGIC 27

3.2 Protocol Logic

3.2.1 Syntax

The formulas of the logic are given by the grammar in Table 3.1, where ρ may be any role,

written using the notation of cord calculus. Here, t and P denote a term and a thread,

respectively. A thread is a sequence of actions by a principal executing an instance of

a role, e.g., Alice executing the initiator role of a protocol. As a notational convention,

we use X̂ to refer to the principal executing the thread X . We use φ and ψ to indicate

predicate formulas, and m to indicate a generic term we call a “message”. A message

has the form (source, destination, protocol-identifier, content), giving each message source

and destination fields and a unique protocol identifier in addition to the message contents.

The source field of a message may not identify the actual sender of the message since the

intruder can spoof the source address. Similarly, the principal identified by the destination

field may not receive the message since the intruder can intercept messages. Nonetheless,

the source and destination fields in the message may be useful for stating and proving

authentication properties while the protocol-identifier is useful for proving properties of

protocols.

Most protocol proofs use formulas of the form θ[P]Xφ, which means that after actions

P are executed in thread X , starting from a state where formula θ is true, formula φ is true

about the resulting state of X . Here are the informal interpretations of the predicates, with

the basis for defining precise semantics discussed in the next section.

The formula Has(X, x) means that principal X̂ possesses information x in the thread

X . This is “possesses” in the limited sense of having either generated the data or received

it in the clear or received it under encryption where the decryption key is known. The

formula Send(X,m) means that the last action in a run of the protocol corresponds to prin-

cipal X̂ sending message m in the thread X . Receive(X,m), New(X, t), Decrypt(X, t),

and Verify(X, t) are similarly associated with the receive, new, decrypt and signature veri-

fication actions of a protocol. Fresh(X, t) means that the term t generated in X is “fresh”

in the sense that no one else has seen any term containing t as a subterm. Typically, a fresh

term will be a nonce and freshness will be used to reason about the temporal ordering of

actions in runs of a protocol. This form of reasoning is useful in proving authentication

28 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

Action formulas
a ::= Send(P,m) |Receive(P,m) |New(P, t) |Decrypt(P, t) |Verify(P, t)

Formulas
φ ::= a |Has(P, t) | Fresh(P, t) |Honest(N) |Contains(t1, t2) |φ ∧ φ | ¬φ | ∃x.φ |

�
φ | � φ | Start(P)

Modal formulas
Ψ ::= φ ρ φ

Table 3.1: Syntax of the logic

properties of protocols. The formula Honest(X̂) means that the actions of principal X̂ in

the current run are precisely an interleaving of initial segments of traces of a set of roles

of the protocol. In other words, X̂ assumes some set of roles and does exactly the actions

prescribed by them. Contains(t1, t2) means that t2 is a subterm of t1. This predicate helps

us identify the components of a message. The two temporal operators
�

and � have the

same meaning as in Linear Temporal Logic [81]. Since we view a run as a linear sequence

of states,
�

φ means that in some state in the past φ holds, whereas � φ means that in

the previous state φ holds. Start(X) means that thread X did not preform any actions in

the past.

We note here that the temporal operator
�

and some of the predicates (Send, Receive)

bear semblance to those used in NPATRL [120], the temporal requirements language for the

NRL Protocol Analyzer [88, 89]. However, while NPATRL is used for specifying protocol

requirements, our logic is also used to infer properties of protocols.

Our formalization of authentication is based on the notion of matching records of runs

[46] which requires that whenever Â and B̂ accept each other’s identities at the end of a

run, their records of the run should match, i.e., each message that Â sent was received by

B̂ and vice versa, each send event happened before the corresponding receive event, and

moreover the messages sent by each principal (Â or B̂) appear in the same order in both

the records. Including the source and destination fields in the message allows us to match

up send-receive actions. Since we reason about correctness of a protocol in an environment

in which other protocols may be executing concurrently, it is important that when Â and

3.2. PROTOCOL LOGIC 29

B̂ accept each other’s identities, they also agree on which protocol they have successfully

completed with the other. One way to extend the matching histories characterization to

capture this requirement is by adding protocol identifiers to messages. Now if Â and B̂

have matching histories at the end of a run, not only do they agree on the source, destination

and content of each message, but also on which protocol this run is an instance of.

3.2.2 Semantics

A formula may be true or false at a run of a protocol. More precisely, the main semantic

relation, Q, R |= φ, may be read, “formula φ holds for run R of protocol Q.” In this

relation, R may be a complete run, with all sessions that are started in the run completed,

or an incomplete run with some principals waiting for additional messages to complete one

or more sessions. If Q is a protocol, then let Q̄ be the set of all initial configurations of

protocol Q, each including a possible intruder cord. Let Runs(Q̄) be the set of all runs of

protocol Q with intruder, each a sequence of reaction steps within a cord space. If φ has

free variables, then Q,R |= φ if we have Q,R |= σφ for all substitutions σ that eliminate

all the free variables in φ. We writeQ |= φ if Q, R |= φ for all R ∈ Runs(Q̄).

The inductive definition of Q,R |= φ is given in Appendix B. Because a run is a

sequence of reaction steps, each step resulting from a principal executing an action, is

possible to assert whether a particular action occurred in a given run and also to make

assertions about the temporal ordering of the actions. An alternative view, similar to the

execution model used in defining Linear Temporal Logic (LTL) semantics, is to think of a

run as a linear sequence of states. Transition from one state to the next is effected by an

action carried out by some principal in some role. Associating that action with the state that

the system ends up in as a consequence, allows us to use the well-understood terminology

of LTL in our logic. A formula is true in a run if it is true in the last state of that run. An

action formula a is therefore true in a run if it is the last action in that run. On the other

hand, a past formula
�

a is true if in the past the action formula a was true in some state,

i.e., if the action had occurred in the past.

30 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

AA1 φ[a]X
�

a

AA2 Fresh(X, t)[a]X
�

(a ∧ � Fresh(X, t))

AN2 φ[(νn)]X Has(Y, n) ⊃ (Y = X)

AN3 φ[(νn)]X Fresh(X, n)

ARP
�

Receive(X, p(x))[(q(x)/q(t))]X
�

Receive(X, p(t))

Table 3.2: Axioms for protocol actions

3.3 Proof System

The proof system contains a complete axiom system for first-order logic (not listed since

any axiomatization will do), together with axioms and proof rules for protocol actions, tem-

poral reasoning, and a specialized form of invariance rule. The axioms and inference rules

specific to reasoning about protocols are presented briefly here, with additional explanation

given in Appendix C.

3.3.1 Axioms for Protocol Actions

The axioms about protocol actions are listed in Table 3.2. All the axioms state properties

that hold in the state reached by executing one of the actions from a state in which a pre-

condition related to the action is assumed. Note that the a in axioms AA1 and AA2 is any

one of the 5 actions and a is the corresponding predicate in the logic. AA1 states that if

a principal has executed an action in some role, then the corresponding predicate asserting

that the action had occurred in the past is true. AA2 states that if a term t is fresh in some

state, then it remains fresh until the corresponding thread executes an action. If thread X

generates a new value n and does no further actions, then AN2 says that no one else knows

n, and AN3 says that n is fresh.

3.3. PROOF SYSTEM 31

3.3.2 Axioms relating Atomic Predicates

Table 3.3 lists axioms relating various propositional properties, most of which follow natu-

rally from the semantics of atomic formulas. The possession axioms characterize the terms

that a principal can derive if it possesses certain other terms. ORIG and REC state re-

spectively that a principal possesses a term if she freshly generated it (a nonce) or if she

received it in some message. TUP and ENC enable construction of tuples and encrypted

terms if the parts are known. PROJ and DEC allow decomposition of a tuple into its

components and decryption of an encrypted term if the key is known. The next two axioms

are aimed at capturing the black-box model of encryption and signature. VER refers to

the unforgeability of signatures while SEC stipulates the need to possess the private key

in order to decrypt a message encrypted with the corresponding public key. The additional

condition requiring principal X̂ to be honest guarantees that the intruder is not in posses-

sion of the private keys. An important axiom is N1 which states that if a thread X has

generated a value n, then that value is distinct from all other values generated in all other

roles. N2 states that freshly generated values within the same thread are distinct from each

other (here After(a, b) is a shorthand for
�

(b ∧ � �
a)). F1 states that fresh values gen-

erated in different threads are distinct. N1, N2, and F1 together capture the intuition that

fresh nonces and Diffie-Hellman exponentials are unique. Finally, CON states that a term

contains its subterms.

3.3.3 Modal Axioms and Rules

Table 3.4 collects the inference rules and some additional axioms. The generic inference

rules follow naturally from the semantics. G2 is exactly of the same form as the rule of

consequence in Hoare Logic. It is clear that most predicates are preserved by additional

actions. For example, if in some state Has(X, n) holds, then it continues to hold, when X

executes additional actions. Intuitively, if a thread possesses some information at a point in

a run, then she remembers it for the rest of the run. Note, however, that the Fresh predicate

is preserved only if the fresh term t is not sent out in a message (see P2). Sequencing rule

S1 gives us a way of sequentially composing two cords P and P ′ when post-condition of

P , matches the pre-condition or P ′

32 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

Possession Axioms:

ORIG
�

New(X, n) ⊃ Has(X, n)

REC
�

Receive(X, x) ⊃ Has(X, x)

TUP Has(X, x) ∧ Has(X, y) ⊃ Has(X, (x, y))

ENC Has(X, x) ∧ Has(X,K) ⊃ Has(X, {|x|}K)

PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)

DEC Has(X, {|x|}K) ∧ Has(X,K) ⊃ Has(X, x)

Encryption and Signature:

SEC Honest(X̂) ∧
�

Decrypt(Y, {|n|}X) ⊃ (Ŷ = X̂)

VER Honest(X̂) ∧
�

Verify(Y, {|n|}X) ∧ X̂ 6= Ŷ ⊃

∃X.∃m.(
�

Send(X,m) ∧ Contains(m, {|n|}X))

Uniqueness of Nonces:

N1
�

New(X, n) ∧
�

New(Y, n) ⊃ (X = Y)

N2 After(New(X, n1),New(X, n2)) ⊃ (n1 6= n2)

F1
�

Fresh(X, t) ∧
�

Fresh(Y, t) ⊃ (X = Y)

Subterm Relation:

CON Contains((x, y), x) ∧ Contains((x, y), y)

Table 3.3: Basic Axioms

3.3. PROOF SYSTEM 33

Generic Rules:

θ[P]Xφ θ[P]Xψ
G1

θ[P]Xφ ∧ ψ

θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′
G2

θ′[P]Xφ
′

φ
G3

θ[P]Xφ

Sequencing rule:

φ1[P]Aφ2 φ2[P
′]Aφ3

S1

φ1[PP
′]Aφ3

Preservation Axioms: (For Persist ∈ {Has,
�
φ})

P1 Persist(X, t)[a]XPersist(X, t)
P2 Fresh(X, t)[a]XFresh(X, t), where t 6⊆ a or a 6= 〈m〉
P3 HasAlone(X, n)[a]XHasAlone(X, n), where n 6⊆v a or a 6= 〈m〉

HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ X = Y)

Freshness Loss Axiom:

F θ[〈m〉]X¬Fresh(X, t), where (t ⊆ m)

Table 3.4: Modal Axioms and Rules

34 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

3.3.4 Axioms and Rules for Temporal Ordering

In order to prove mutual authentication, we need to reason about the temporal ordering of

actions carried out by different threads. For this purpose, we use a fragment of the proof

system for Propositional Linear Temporal Logic, PLTL (Table 3.5). See [112] for a com-

plete axiomatization of PLTL. The axioms and rules specific to the temporal ordering of

actions are presented in Table 3.5. We use a1, . . . , an, to denote action formulas corre-

sponding to actions a1, . . . , an. Similarly, b1 and b2 stand for any action predicates. The

rules are fairly straightforward. AF0 simply states that before a thread X executes any

action, it is true that X did not execute any actions in the past. AF1 orders the actions

within a role. This is consistent with the way we view a role as an ordered sequence of

actions. AF2 uses the freshness of terms to reason about the ordering of actions carried

out by different threads. Intuitively, AF2 states that if a thread X has a fresh value t at

some point in the run and than executes action b1(X, t1), then any action b2(Y, t2) carried

out by any other thread which involves t (e.g. if Y receives a message containing t inside a

signature), happens after the action b1.

3.3.5 The Honesty Rule

The honesty rule is an invariance rule for proving properties about the actions of princi-

pals that execute roles of a protocol, similar in spirit to the basic invariance rule of LTL

[81] and invariance rules in other logics of programs. The honesty rule is often used to

combine facts about one role with inferred actions of other roles. For example, suppose

Alice receives a signed response from a message sent to Bob. Alice may use facts about

Bob’s role to infer that Bob must have performed certain actions before sending his reply.

This form of reasoning may be sound if Bob is honest, since honest, by definition in our

framework, means “follows one or more roles of the protocol.” The assumption that Bob is

honest is essential because the intruder may perform arbitrary actions with any key that has

been compromised. Since we have added preconditions to the protocol logic presented in

[49, 50], we reformulate the rule here is a more convenient form using preconditions and

postconditions.

To a first approximation, the honesty rule says that if a property holds before each role

3.3. PROOF SYSTEM 35

PLTL Axioms:

T1
�

(φ ∧ ψ) ⊃ (
�

φ ∧
�

ψ)

T2
�

(φ ∨ ψ) ⊃ (
�

φ ∨
�

ψ)

T3 � ¬φ ↔ ¬ � φ

Temporal Generalization Rule:

φ
TGEN

¬
�
¬φ

Temporal Ordering of actions:

After(a, b) ≡
�

(b ∧ � �
a)

ActionsInOrder(a1, . . . , an) ≡ After(a1, a2) ∧ · · · ∧ After(an−1, an)

AF0 Start(X)[]X ¬
�

a(X, t)

AF1 θ[a1 . . . an]X After(a1, a2) ∧ . . . ∧ After(an−1, an)

AF2 (
�

(b1(X, t1) ∧ � Fresh(X, t)) ∧
�

b2(Y, t2)) ⊃

After(b1(X, t1), b2(Y, t2)), where t ⊆ t2 and X 6= Y

Table 3.5: Axioms and rules for temporal ordering

36 CHAPTER 3. PROTOCOL COMPOSITION LOGIC

starts, and the property is preserved by any sequence of actions that an honest principal

may perform, then the property holds for every honest principal. An example property that

can be proved by this method is that if a principal sends a signed message of a certain form,

the principal must have received a request for this response. The proof of a property like

this depends on the protocol, of course. For this reason, the antecedent of the honesty rule

includes a set of formulas constructed from the set of roles of the protocol in a systematic

way. A subtle issue is that the honesty rule only involves certain points in a protocol ex-

ecution. This is not a fundamental limitation in the nature of invariants, but the result of

a design tradeoff that was made in formulating the rule. More specifically, it is natural to

assume that once a thread receives a message, the thread may continue to send messages

and perform internal actions until the thread needs to pause to wait for additional input.

Another way to regard this assumption is that we do not give the attacker control over the

scheduling of internal actions or the point at which messages are sent. The attacker only

has control over the network, not local computing. We therefore formulate our honesty rule

to prove properties that hold in every pausing state of every honest rule. By considering

fewer states, we consider more invariants true. By analogy with database transactions, for

example, we consider a property an invariant if it holds after every “transaction” is com-

pleted, allowing roles to temporarily violate invariants as long as they preserve them before

pausing. A similar convention is normally associated with loop invariants: a property is a

loop invariant if it holds every time the top of the loop is reached; it is not necessary that

the invariant hold at every point in the body of the loop.

Recall that a protocol Q = {ρ1, ρ2, . . . , ρk} is a set of roles, each executed by zero or

more honest principals in any run of Q. A sequence P of actions is a basic sequence of

role ρ, written P ∈ BS(ρ), if P is a contiguous subsequence of ρ such that either (i) P

starts at the beginning of ρ and ends with the last action before the first receive, or (ii) P

starts with a receive action and continues up to the last action before the next receive, or

(iii) P starts with the last receive action of the role and continues through the end of the

role. Using ρ ∈ Q to indicate that ρ is a role ofQ, and the notation for basic sequences just

introduced, the honesty rule for protocolQ is written as follows.

3.3. PROOF SYSTEM 37

Start(X)[]X φ ∀ρ ∈ Q.∀P ∈ BS(ρ). φ [P]X φ
HONQ

Honest(X̂) ⊃ φ

no free variable in φ

except X bound in

[P]X

In words, if φ holds at the beginning of every role of Q and is preserved by all its

basic sequences, then every honest principal executing protocolQ must satisfy φ. The side

condition prevents free variables in the conclusion Honest(X̂) ⊃ φ from becoming bound

in any hypothesis. As explained in [49, 50], this is a finitary rule, expressed in a slightly

unusual way. For each protocol Q, the corresponding instance of the honesty rule has a

finite number of formulas in the antecedent, the exact number and form of each depending

on the roles of Q and their basic sequences.

3.3.6 Soundness Theorem

The soundness theorem for this proof system is proved, by induction on the length of

proofs, in Appendix C. We write Γ ` γ if γ is provable from the formulas in Γ and

any axiom or inference rule of the proof system except the honesty rule (HONQ for any

protocol Q). We write Γ `Q γ if γ is provable from the formulas in Γ, the basic axioms

and inference rules of the proof system and the honesty rule for protocol Q (i.e., HONQ

but not HONQ′ for anyQ′ 6= Q). Here γ is either a modal formula or a basic formula (i.e.,

of the syntactic form Ψ or φ in Table 3.1).

Theorem 3.3.1. If Γ `Q γ, then Γ |=Q γ. Furthermore, if Γ ` γ, then Γ |= γ.

Chapter 4

PCL Proof Methods

This chapter describes two methods of proof in PCL, which distinguish it from other ap-

proaches for proving security properties of network protocols. Section 4.1 discusses a

method for compositional reasoning about protocols, while Section 4.2 presents an abstraction-

instantiation method for reasoning about a class of protocol refinements.

4.1 Compositional Proof Method

In this section, we present a method for reasoning about compound protocols from their

parts. In general terms, we address two basic problems in compositional security. The first

may be called additive combination – we wish to combine protocol components in a way

that accumulates security properties. For example, we may wish to combine a basic key

exchange protocol with an authentication mechanism to produce a protocol for authenti-

cated key exchange. The second basic problem is ensuring nondestructive combination. If

two mechanisms are combined, each serving a separate purpose, then it is important to be

sure that neither one degrades the security properties of the other. For example, if we add

an alternative mode of operation to a protocol, then some party may initiate a session in

one mode and simultaneously respond to another session in another mode, using the same

public key or long-term key in both. Unless the modes are designed not to interfere, there

may be an attack on the multi-mode protocol that would not arise if only one mode were

possible. An interesting illustration of the significants of nondestructive combination is the

38

4.1. COMPOSITIONAL PROOF METHOD 39

construction in [72] which shows that for every security protocol there is another protocol

that interacts with it insecurely.

Intuitively, additive combination is captured by a before-after formalism for reasoning

about steps in protocol execution. Suppose P is a sequence of protocol steps, and φ and ψ

are formulas asserting secrecy of some data, past actions of other principals, or other facts

about a run of a protocol. The triple φ[P]Aψ means that if φ is true before principal A does

actions P , then ψ will be true afterwards. For example, the precondition might assert that

A knows B’s public key, the actions P allow A to receive a signed message and verify B’s

signature, and the postcondition may say that B sent the signed message that A received.

The importance of before-after assertions is that we can combine assertions about individ-

ual protocol steps to derive properties of a sequence of steps: if φ[P]Aψ and ψ[P ′]Aθ, then

φ[PP ′]Aθ. For example, an assertion assuming that keys have been successfully distributed

can be combined with steps that do key distribution to prove properties of a protocol that

distributes keys and uses them.

We ensure nondestructive combination, which is useful for reasoning about running

older versions of a protocol concurrently with current versions (e.g., SSL 2.0 and SSL 3.0)

and for verifying protocols like IKE [59] which contain a large number of sub-protocols,

using invariance assertions. The central assertion in our reasoning system, Γ ` φ[P]Aψ,

says that in any protocol satisfying the invariant Γ, the before-after assertion φ[P]Aψ holds

in any run (regardless of any actions by any dishonest attacker). Typically, our invariants are

statements about principals that follow the rules of a protocol, as are the final conclusions.

For example, an invariant may state that every honest principal maintains secrecy of its

keys, where “honest” means simply that the principal only performs actions that are given

by the protocol. A conclusion in such a protocol may be that if Bob is honest (so no one else

knows his key), then after Alice sends and receives certain messages, Alice knows that she

has communicated with Bob. Under the specific conditions described here, nondestructive

combination occurs when two protocols are combined and neither violates the invariants of

the other.

As informally described, “additive combination” and “nondestructive combination”

may seem like overlapping concepts, at least to the degree that additive combination as-

sumes that the added steps do not destroy any security properties. In our logic, we factor

40 CHAPTER 4. PCL PROOF METHODS

the two concepts into two separate notions, one for adding steps to a protocol under some

assumed invariants, and another for showing that a combination of protocol steps preserves

a set of invariants. More specifically, if we want to add an authentication step to a protocol,

we first show that the additional step preserves the same needed invariants. Then, under

the assumption that invariants are preserved, we combine properties guaranteed by separate

steps. There is some synergy in this approach, since the logical principles used to prove

an invariant are the same as those used to prove protocol properties from a given set of

invariants.

4.1.1 Composition Theorems

In this section, we define sequential and parallel composition of protocols as syntactic

operations on cords and present associated methods for proving protocol properties com-

positionally. Recall that a protocol is defined as a finite set of cords, one for each role of

the protocol. For example, as explained in Section 3.1, the STS protocol is defined by two

cords, one each for the initiator and responder role of the protocol.

Definition 4.1.1. (Parallel Composition) The parallel composition Q1 | Q2 of protocols

Q1 andQ2 is the union of the sets of cords Q1 andQ2.

For example, consider the protocol obtained by parallel composition of SSL 2.0 and

SSL 3.0. The definition above allows an honest principal to simultaneously engage in ses-

sions of the two protocols. Clearly, a property proved about either protocol individually

might no longer hold when the two are run in parallel, since an adversary might use in-

formation acquired by executing one protocol to attack the other. Formally, some step in

the logical proof of the protocol property is no longer correct. Since all the axioms and

inference rules in Section 3.3 hold for all protocols, the only formulas used in the proof

which might no longer be valid are those proved using the honesty rule, i.e., the protocol

invariants. In order to guarantee that the security properties of the individual protocols are

preserved under parallel composition, it is therefore sufficient to verify that each proto-

col respects the invariants of the other. This observation suggests the following four-step

methodology for proving properties of the parallel composition of two protocols1.

1A preliminary version of this result was presented in [36, 39]

4.1. COMPOSITIONAL PROOF METHOD 41

1. Prove separately the security properties of protocolsQ1 and Q2.

`Q1
Ψ1 and `Q2

Ψ2

2. Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas included

in these sets will typically be the formulas in the two proofs, which were proved

using the honesty rule. The proofs from the previous step can be decomposed into

two parts—the first part proves the protocol invariants using the honesty rule for

the protocol, while the second proves the protocol property using the invariants as

hypotheses, but without using the honesty rule. Formally,

`Q1
Γ1 and Γ1 ` Ψ1 and `Q2

Γ2 and Γ2 ` Ψ2

3. Notice that it is possible to weaken the hypotheses to Γ1 ∪ Γ2. The proof of the

protocol properties is clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 ` Ψ1 and Γ1 ∪ Γ2 ` Ψ2

4. Prove that the invariants, Γ1 ∪ Γ2, hold for both the protocols. This step uses the

transitivity of entailment in the logic: if `Q Γ and Γ ` γ, then `Q γ. Since `Q1
Γ1

was already proved in Step 1, in this step, it is sufficient to show that `Q1
Γ2 and

similarly that `Q2
Γ1. By Lemma 4.1.2 below, we therefore have `Q1|Q2

Γ1 ∪ Γ2.

From this and the formulas from step 3, we can conclude that the security properties

ofQ1 and Q2 are preserved under their parallel composition.

`Q1|Q2
Ψ1 and `Q1|Q2

Ψ2

Lemma 4.1.2. If `Q1
φ and `Q2

φ, then `Q1|Q2
φ, where the last step in the proof of φ in

bothQ1 and Q2 uses the honesty rule and no previous step uses the honesty rule.

Theorem 4.1.3. If `Q1
Γ and Γ ` Ψ and `Q2

Γ, then `Q1|Q2
Ψ.

42 CHAPTER 4. PCL PROOF METHODS

Definition 4.1.4. (Sequential Composition) A protocol Q is the sequential composition of

two protocols Q1 and Q2, if each role of Q is obtained by the sequential composition of a

cord ofQ1 with a cord ofQ2.

Definition 4.1.5. (Sequential Composition of Cords) Given closed cords r = (x0 . . . x`−1)

[R]X〈u0 . . . um−1〉, s = (y0 . . . ym−1)[S]Y 〈t0 . . . tn−1〉, their sequential composition is de-

fined by

r; s = (x0 . . . x`−1)[RS
′]X〈t

′
0 . . . t

′
n−1〉,

where S ′ and t′i are the substitution instances of S and ti respectively, such that each

variable yk is replaced by the term uk. Furthermore, under this substitution, Y is mapped

to X . Variables are renamed so that free variables of S, tj and uk do not become bound in

r; s. RS ′ is the strand obtained by concatenating the actions in R with those in S ′.

It is clear that the sequential composition of protocols does not yield an unique result.

Typically, when we sequentially compose protocols we have a specific composition of roles

in mind. For example, if we compose two two-party protocols, we might compose the cor-

responding initiator and responder roles. Further explanation of the sequential composition

of two cords is given in Appendix A. We now illustrate the idea with an example. We

consider two protocols: DH0, the initial part of the Diffie-Hellman key exchange protocol,

and CR, a signature-based challenge-response protocol. The protocols are written out as

cords below.

DH0 = { (X Y)[(νx)]X〈X Y gx〉 }

CR = { (X Y x)[〈X̂, Ŷ , x〉(Ŷ , X̂, y, z)(z/{|x, y, X̂|}Y)〈X̂, Ŷ , {|x, y, Ŷ |}X〉]X〈 〉,

(X Y y)[(Ŷ , X̂, x)〈X̂, Ŷ , {|x, y, Ŷ |}X〉(Ŷ , X̂, z)(z/{|x, y, X̂|}Y)]X〈 〉 }

The ISO-9798-3 protocol is a sequential composition of these two protocols. The cords

of ISO-9798-3 are obtained by sequential composition of the cord of DH0 with the two

cords of CR. When sequentially composing cords, we substitute the output parameters of

the first cord for the input parameters of the second and α-rename bound variables to avoid

4.1. COMPOSITIONAL PROOF METHOD 43

variable capture.

ISO − 9798− 3 = { (X Y)[(νx)〈X̂, Ŷ , gx〉(Ŷ , X̂, y, z)(z/{|gx, y, X̂|}Y)

〈X̂, Ŷ , {|gx, y, Ŷ |}X〉]X〈 〉,

(X Y)[(νy)(Ŷ , X̂, x)〈X̂, Ŷ , {|x, gy, Ŷ |}X〉(Ŷ , X̂, z)

(z/{|x, gy, X̂|}Y)]X〈 〉 }

The sequencing rule, S1 (see Table 3.4), is the main rule used to construct a modular

correctness proof of a protocol that is a sequential composition of several smaller subpro-

tocols. It gives us a way of sequentially composing two roles P and P ′ when the logical

formula guaranteed by the execution of P , i.e., the post-condition of P , matches the pre-

condition required in order to ensure that P ′ achieves some property. In addition, just like

in parallel composition, it is essential that the composed protocols respect each other’s in-

variants. Our methodology for proving properties of the sequential composition of two

protocols involves the following steps.

1. Prove separately the security properties of protocolsQ1 and Q2.

`Q1
Ψ1 and `Q2

Ψ2

2. Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas included

in these sets will typically be the formulas in the two proofs, which were proved

using the honesty rule. The proofs from the previous step can be decomposed into

two parts—the first part proves the protocol invariants using the honesty rule for

the protocol, while the second proves the protocol property using the invariants as

hypotheses, but without using the honesty rule. Formally,

`Q1
Γ1,Γ1 ` Ψ1 and `Q2

Γ2,Γ2 ` Ψ2

3. Weaken the hypotheses to Γ1 ∪ Γ2. The proof of the protocol properties is clearly

preserved under a larger set of assumptions.

Γ1 ∪ Γ2 ` Ψ1 and Γ1 ∪ Γ2 ` Ψ2

44 CHAPTER 4. PCL PROOF METHODS

4. If the post-condition of the modal formula Ψ1 matches the pre-condition of Ψ′2, then

the two can be sequentially composed by applying the sequencing rule S1. Here Ψ′2

is obtained from Ψ2 by a substitution of the free variables determined by the sequen-

tial composition of the corresponding cords. This preserves the formulas proved in

the previous steps since those formulas are true under all substitutions of the free

variables. Assuming that Ψ1 and Ψ′2 are respectively θ[P1]φ and φ[P2]ψ, we have:

Γ1 ∪ Γ′2 ` θ[P1P2]ψ

5. Prove that the invariants used in proving the properties of the protocols, Γ1∪Γ′2, hold

for both the protocols. Since `Q1
Γ1 was already proved in Step 1, in this step, it

is sufficient to show that `Q1
Γ′2 and similarly that `Q2

Γ1. By Lemma 4.1.6, we

therefore have `Q3
Γ1 ∪ Γ′2, where Q3 is their sequential composition. From this

and the formulas from steps 3 and 4, we can conclude that the security properties

of Q1 and Q2 are preserved under their sequential composition and furthermore the

following formula is provable.

`Q3
θ[P1P2]ψ

Lemma 4.1.6. If `Q1
φ and `Q2

φ, then `Q3
φ, where Q3 is a sequential composition of

Q1 andQ2, and the last step in the proof of φ in bothQ1 andQ2 uses the honesty rule and

no previous step uses the honesty rule.

Theorem 4.1.7. If `Q1
Γ1, Γ1 ` θ[P1]φ; `Q2

Γ2, Γ2 ` φ[P2]ψ; and `Q1
Γ2, `Q2

Γ1, then

`Q3
θ[P1P2]ψ, where Q3 is a sequential composition ofQ1 andQ2.

4.1.2 Illustrative Example

In this section, we use the protocol logic to formally prove properties of the ISO-9798-

3 protocol from properties of its parts—the signature-based challenge-response protocol

(CR) and the protocol based on Diffie-Hellman key exchange (DH0), presented in the

previous section. The logical proof follows the derivation step in Figure 2.3, where P16 is

4.1. COMPOSITIONAL PROOF METHOD 45

derived from C1 and P4 by applying a composition operation (note that P16 is ISO-9798-3

and C1 and P4 are DH0 and CR respectively). We sketch the outline of the compositional

proof in Section 4.1.2 and present the complete formal proofs in Section 4.1.2.

Compositional Proof Sketch

As illustrated in Section 4.1.1, the ISO-9798-3 protocol is constructed by a sequential com-

position of DH0 and CR. Here, we describe the key secrecy property of DH0 and the

mutual authentication property of CR. We then prove that the ISO-9798-3 protocol can

be used to establish an authenticated shared secret by composing the correctness proofs of

these two protocols. In doing so, we follow the method for proving sequential composition

results presented in the previous section.

Challenge Response Protocol, CR: Our formulation of authentication is based on the

concept of matching conversations [20] and is similar to the idea of proving authentication

using correspondence assertions [127]. The same basic idea is also presented in [46] where

it is referred to as matching records of runs. Simply put, it requires that whenever Â and B̂

accept each other’s identities at the end of a run, their records of the run match, i.e., each

message that Â sent was received by B̂ and vice versa, each send event happened before

the corresponding receive event, and moreover the messages sent by each principal (Â or

B̂) appear in the same order in both the records.

A complete proof of the mutual authentication property guaranteed by executing the

CR protocol is presented in Table 4.2 in Section 4.1.2. We also discuss there the structure

of the proof and identify a method for proving authentication results in the logic. The final

property proved about the initiator role is of the form: precondition [actions] postcondition,

46 CHAPTER 4. PCL PROOF METHODS

where:

precondition = Fresh(X, x)

actions = [〈X̂, Ŷ , x〉(Ŷ , X̂, y, z)(z/{|x, y, X̂|}Y)〈X̂, Ŷ , {|x, y, Ŷ |}X〉]X

postcondition = Honest(Ŷ) ⊃ ∃Y. ActionsInOrder(

Send(X, {X̂, Ŷ , x}),

Receive(Y, {X̂, Ŷ , x}),

Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}),

Receive(X, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}))

The actions in the formula are the actions of the initiator cord of CR, given in section 4.1.1.

There is an implicit universal quantification over the free variables in the formula (X , Y ,

and x), which correspond to the input parameters of the initiator cord. The precondition im-

poses constraints on the free variables. In this example, the requirement is that x is a fresh

term generated in thread X . The postcondition captures the security property that is guar-

anteed by executing the actions starting from a state where the precondition holds. In this

specific example, the postcondition (referred as φauth henceforth) is a formula capturing the

notion of matching conversations. Intuitively, this formula means that after executing the

actions in the initiator role purportedly with Ŷ , X̂ is guaranteed that her record of the run

matches that of Ŷ , provided that Ŷ is honest (meaning that she always faithfully executes

some role of the CR protocol and does not, for example, send out her private keys).

The set of invariants used in this proof, Γ2, contains only one formula (line (7) of

Table 4.2).

Γ2 = { Honest(Ŷ) ⊃ (

(
�

Send(Y, x0) ∧ Contains(x0, {|x, y, X̂|}Y) ∧ ¬
�

Fresh(Y, x)) ⊃ (

x0 = {Ŷ , X̂, {y, {|x, y, X̂|}Y }}∧�
(Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}) ∧ � Fresh(Y, y))∧

After(Receive(Y, {X̂, Ŷ , x}), Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}))

)) }

Intuitively, this invariant states that whenever honest Ŷ signs a term which is a triple with

4.1. COMPOSITIONAL PROOF METHOD 47

DH1 Computes(X, gab) ⊃ Has(X, gab)

DH2 Has(X, gab) ⊃

(Computes(X, gab) ∨ ∃m.(
�

Receive(X,m) ∧ Contains(m, gab)))

DH3 (
�

Receive(X,m) ∧ Contains(m, gab)) ⊃

∃Y,m′.(Computes(Y, gab) ∧
�

Send(Y,m′) ∧ Contains(m′, gab))

DH4 Fresh(X, a) ⊃ Fresh(X, ga)

Computes(X, gab) ≡ ((Has(X, a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

Table 4.1: Diffie-Hellman Axioms

the third component X̂, and the first component was not freshly generated by Ŷ , then it is

the case that this signature was sent as part of the second message of the CR protocol and

Ŷ must have previously received the first message of the protocol from X̂ . (Note that each

message sent and received has the protocol-id in it. We omit these to improve readability).

Base Diffie Hellman Protocol, DH0: The DH0 protocol involves generating a fresh

random number and computing its Diffie-Hellman exponential. It is therefore the initial

part of the standard Diffie-Hellman key exchange protocol. In order to reason about the

security property of this protocol, the term language and the protocol logic have to be en-

riched to allow reasoning about Diffie-Hellman computation. The terms g(a) and h(a, b),

respectively representing the Diffie-Hellman exponential gamod p and the Diffie-Hellman

secret gabmod p, are added to the term language. To improve readability, we will use ga

and gab instead of g(a) and h(a, b). Table 4.1 presents the rules specific to the way that

Diffie-Hellman secrets are computed. The predicate Computes() is used as a shorthand

to denote the fact that the only way to compute a Diffie-Hellman secret is to possess one

exponent and the other exponential. DH1 states that if X can compute the Diffie-Hellman

secret, then she also possesses it. DH2 captures the intuition that the only way to possess

a Diffie-Hellman secret is to either compute it directly or obtain it from a received message

containing it. DH3 states that if a principal receives a message containing a Diffie-Hellman

48 CHAPTER 4. PCL PROOF METHODS

secret, someone who has computed the secret must have previously sent a (possibly differ-

ent) message containing it. DH4 captures the intuition that if a is fresh at some point of a

run, then ga is also fresh at that point. The property of the initiator role of theDH0 protocol

is given by the formula below. It is of the modal form [actions] postcondition.

[(νx)]X HasAlone(X, x) ∧ Fresh(X, gx)

This formula follows easily from the axioms and rules of the logic. It states that after

carrying out the initiator role of DH0, X possesses a fresh Diffie-Hellman exponential gx

and is the only one who possesses the exponent x. This property will be useful in proving

the secrecy condition of the ISO-9798-3 protocol. The set of invariants used in this proof,

Γ1, is empty.

Composing the Protocols: We now prove the security properties of the ISO-9798-3 pro-

tocol by composing the correctness proofs of DH0 and CR. In doing so, we follow the

methodology for proving sequential composition results outlined in Section 4.1.1. Let us

go back and look at the form of the logical formulas characterizing the initiator roles of

DH0 and CR. Denoting the initiator role actions of DH0 and CR by InitDH0
and InitCR

respectively, we have:

Γ1 ` Start(X) [InitDH0
]X Fresh(X, gx) (4.1)

Γ2 ` Fresh(X, x) [InitCR]X φauth (4.2)

At this point, Step 1 and Step 2 of the proof method are complete. For Step 3, we note that

since Γ1 is empty, Γ2 ∪ Γ1 is simply Γ2.

Γ2 ` Start(X) [InitDH0
]X Fresh(X, gx) (4.3)

Γ2 ` Fresh(X, x) [InitCR]X φauth (4.4)

We are ready to move on to Step 4. We first substitute the output parameters of the initiator

cord for DH0 for the input parameters of the initiator cord of CR. This involves substitut-

ing gx for x. We refer to the modified protocol as CR′. Since the validity of formulas is

4.1. COMPOSITIONAL PROOF METHOD 49

preserved under substitution, the following formula is valid.

Γ2[g
x/x] ` Fresh(X, gx) [InitCR′]X φauth[g

x/x] (4.5)

Note that the post-condition of (1) matches the pre-condition of (5). We can therefore

compose the two formulas by applying the sequencing rule S1. The resulting formula is:

Γ2[g
x/x] ` Start(X) [InitDH0

; InitCR′]X φauth[g
x/x] (4.6)

The result of composing the two roles is that the freshly generated Diffie-Hellman ex-

ponential is substituted for the nonce in the challenge-response cord. The resulting role

is precisely the initiator role of the ISO-9798-3 protocol. The formula above states that

the mutual authentication property of CR is preserved by the composition process assum-

ing that the invariants in Γ2 are still satisfied. Finally, using the honesty rule, it is easily

proved that DH0 respects the environmental invariants in Γ2 (Step 5). Therefore, from

Lemma 4.1.6, we conclude that the sequential composition of DH0 and CR, which is

ISO-9798-3 , respects the invariants in Γ2. This completes the compositional proof for the

mutual authentication property.

The other main step involves proving that the secrecy property of DH0 is preserved

under sequential composition with CR, since CR′ does not reveal the Diffie-Hellman ex-

ponents. The following two formulas are easily provable.

` Start(X) [InitDH0
]X HasAlone(X, x) (4.7)

` HasAlone(X, x) [InitCR′]X HasAlone(X, x) (4.8)

Therefore, by applying the sequencing rule S1 again, we have the secrecy condition for the

ISO-9798-3 protocol:

` Start(X) [InitDH0
; InitCR′]X HasAlone(X, x) (4.9)

Since the set of invariants is empty, Step 2, Step 3 and Step 5 follow trivially. The rest

of the proof uses properties of the Diffie-Hellman method of secret computation to prove

50 CHAPTER 4. PCL PROOF METHODS

the following logical formula:

Start(X) [InitDH0
; InitCR′]X Honest(Ŷ) ⊃

∃Y. ∃y. (Has(X, gxy) ∧ (Has(Z, gxy) ⊃ (Z = X ∨ Z = Y)))

Intuitively, the property proved is that if Ŷ is honest, then X̂ and Ŷ are the only people who

know the Diffie-Hellman secret gxy. In other words, the ISO-9798-3 protocol can be used

to compute an authenticated shared secret. The complete proof is presented in Table 4.3 in

Section 4.1.2.

Formal Correctness Proofs of Protocols

The proof of the shared secret property of ISO-9798-3 is given in Table 4.3. This proof uses

composition ideas and the structure of the proof has been discussed in the previous section.

A complete proof of the authentication property for the initiator role of the challenge-

response protocol (InitCR) is given in Table 4.2. We discuss below the structure of this

proof and provide some insight on the proof technique used in proving authentication prop-

erties in this logic.

Proof Structure of Challenge-Response Protocol: The formal proof in Table 4.2 natu-

rally breaks down into three parts:

• Lines (1)–(3) assert what actions were executed by Alice in the initiator role as well

as the order in which those actions occurred. Specifically, in this part of the proof,

the order in which Alice executed her send-receive actions is proved. Denoting the

i-th message of the protocol by msgi, we prove: ActionsInOrder(Send(A,msg1),

Receive(A,msg2)). (As an expositional convenience, we refer to X̂ and Ŷ as Al-

ice and Bob.)

• In lines (4)–(8), we first use the fact that the signatures of honest parties are un-

forgeable (axiom VER), to conclude that Bob must have sent out some message

containing his signature since Alice received Bob’s signature in msg2. The honesty

rule is then used to infer that whenever Bob generates a signature of this form, he

4.1. COMPOSITIONAL PROOF METHOD 51

always sends it to Alice as part of msg2 of the protocol and must have previously

received msg1 from Alice. Thus, the order in which Bob executed his actions are

proved, i.e., ActionsInOrder(Receive(B,msg1), Send(B,msg2)).

• Finally, in lines (9)–(11), the temporal ordering rules are used to order the send-

receive actions of Alice and Bob. Line (11) concludes that Bob must have received

msg1 after Alice sent it since msg1 contains a fresh nonce. Line (12) uses the same

argument for msg2 sent by Bob. Finally, line (13) combines these two assertions to

conclude that the following formula is true:

ActionsInOrder(Send(A,msg1), Receive(B,msg1), Send(B,msg2), Receive(A,msg2)).

This formula means that Alice and Bob have matching conversations.

This proof is an instance of a general method for proving authentication results in the

protocol logic. In proving that Alice, after executing the initiator role of a protocol purport-

edly with Bob, is indeed assured that she communicated with Bob, we usually follow these

3 steps:

1. Prove the order in which Alice executed her send-receive actions. This is done by

examining the actions in Alice’s role.

2. Assuming Bob is honest, infer the order in which Bob carried out his send-receive

actions. This is done in two steps. First, use properties of cryptographic primitives

(like signing and encryption) to conclude that only Bob could have executed a certain

action (e.g., generate his signature). Then use the honesty rule to establish a causal

relationship between that identifying action and other actions that Bob always does

whenever he executes that action (e.g, sendmsg2 to Alice after having receivedmsg1

from her).

3. Finally, use the temporal ordering rules to establish an ordering between the send-

receive actions of Alice and Bob. The causal ordering between messages sent by the

peers is typically established by exploiting the fact that messages contain fresh data.

Proofs in the logic are therefore quite insightful. The proof structure often follows a

natural language argument, similar to one that a protocol designer might use to convince

herself of the correctness of a protocol.

52 CHAPTER 4. PCL PROOF METHODS

AA2,P1 Fresh(X, x)[InitCR]X�
(Send(X, {X̂, Ŷ , x}) ∧ � Fresh(X, x)) (4.1)

AA1,P1 Fresh(X, x)[InitCR]X
�

Verify(X, {|x, y, X̂|}Y) (4.2)

AF1,ARP Fresh(X, x)[InitCR]X ActionsInOrder(

Send(X, {X̂, Ŷ , x}),

Receive(X, {Ŷ , X̂, y, {|x, y, X̂|}Y }),

Send(X, {X̂, Ŷ , {|x, y, Ŷ |}X})) (4.3)

(3),F1,P1,G2 Fresh(X, x)[InitCR]X¬
�

Fresh(Y, x) (4.4)

VER Honest(Ŷ) ∧
�

Verify(X, {|x, y, X̂|}Y) ⊃

∃Y.∃x′.(
�

Send(Y, x′) ∧ Contains(x′, {|x, y, X̂|}Y)) (4.5)

(2), (5),P1,G1− 3 Fresh(X, x)[InitCR]XHonest(Ŷ) ⊃

∃Y.∃x′.(
�

Send(Y, x′) ∧ Contains(x′, {|x, y, X̂|}Y)) (4.6)

HON Honest(Ŷ) ⊃ (((
�

Send(Y, x0) ∧

Contains(x0, {|x, y, X̂|}Y) ∧ ¬
�

Fresh(Y, x)) ⊃

(x0 = {Ŷ , X̂, {y, {|x, y, X̂|}Y }} ∧�
(Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}) ∧ � Fresh(Y, y)) ∧

ActionsInOrder(Receive(Y, {X̂, Ŷ , x}),

Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}))))) (4.7)

(4), (6), (7),G1− 3 Fresh(X, x)[InitCR]XHonest(Ŷ) ⊃

∃Y.
�

(Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}) ∧ � Fresh(Y, y)) ∧

After(Receive(Y, {X̂, Ŷ , x}),

Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }})) (4.8)

(1),AF2 Fresh(X, x)[InitCR]X
�

Receive(Y, {X̂, Ŷ , x})) ⊃

After(Send(X, {X̂, Ŷ , x}),Receive(Y, {X̂, Ŷ , x})) (4.9)

(3),AF2 Fresh(X, x)[InitCR]XSend(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }})

∧ � Fresh(Y, y) ⊃ After(Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}),

Receive(X, {Ŷ , X̂, y, {|x, y, X̂|}Y }) (4.10)

(8), (9), (10),AF2 Fresh(X, x)[InitCR]XHonest(Ŷ) ⊃

∃Y. ActionsInOrder(Send(X, {X̂, Ŷ , x}),Receive(Y, {X̂, Ŷ , x}),

Send(Y, {Ŷ , X̂, {y, {|x, y, X̂|}Y }}),

Receive(X, {Ŷ , X̂, y, {|x, y, X̂|}Y })) (4.11)

Table 4.2: Deductions of X̂ executing Init role of Challenge-Response Protocol

4.1. COMPOSITIONAL PROOF METHOD 53

P3 HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]X

HasAlone(X, x) (4.1)

CR HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ActionsInOrder(

Send(X, {X̂, Ŷ , gx}),

Receive(Y, {X̂, Ŷ , gx}),

Send(Y, {Ŷ , X̂, {n, {|gx, n, X̂|}Y }}),

Receive(X, {Ŷ , X̂, n, {|gx, n, X̂|}Y })) (4.2)

HON Honest(Ŷ) ∧
�

Send(Y, {Ŷ , X̂, {n, {|gx, n, X̂|}Y }}) (4.3)

⊃ ∃y′.(n = gy′

∧ HasAlone(Y, y′))

(2), (3) HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(n = gy ∧ HasAlone(Y, y)) (4.4)

AA1,REC,PROJ,P1 HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHas(X, n) (4.5)

(1), (4), (5),Computes HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(n = gy ∧ Computes(X, gxy)) (4.6)

(1), (4),Computes HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(n = gy ∧

(Computes(Z, gxy) ⊃ (Z = X ∨ Z = Y)))) (4.7)

(6), (7) HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(n = gy ∧ Computes(X, gxy) ∧

(Computes(Z, gxy) ⊃ (Z = X ∨ Z = Y)))) (4.8)

DH2,DH3 Has(X, gxy) ⊃ (Computes(X, gxy) ∨ ∃Y,m′.

(Computes(Y, gxy) ∧
�

Send(Y,m′) ∧ Contains(m′, gxy)) (4.9)

HON Honest(Ŷ) ⊃ (Computes(Y, gxy) ⊃

¬∃m′.(
�

Send(Y,m′) ∧ Contains(m′, gxy))) (4.10)

(8), (9), (10),DH1 HasAlone(X, x) ∧ Fresh(X, gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(Has(X, gxy) ∧

(Has(Z, gxy) ⊃ (Z = X ∨ Z = Y))) (4.11)

Table 4.3: Deductions of X̂ executing Init role of CR′ protocol

54 CHAPTER 4. PCL PROOF METHODS

4.2 Abstraction-Refinement Proof Method

In this section, we present proof methods for reasoning about protocol refinements. Recall

that in a protocol refinement, a message or portion of a message is systematically refined

by, for example, adding additional data or otherwise changing the data contained in one

or more messages. For example, replacing a plaintext nonce by an encrypted nonce, in

both the sending and receiving protocol roles, is a protocol refinement. While refinements

seem to arise naturally in contemporary practical protocols [8, 74], they provide a chal-

lenge for formal reasoning. One reason is that refinements may involve replacement, and

replacement of one expression by another does not have a clean formulation in standard

mathematical logic. This immediate problem is solved by introducing protocol templates

and decomposing term replacement into an abstraction step of selecting an appropriate

template and an instantiation step that replaces template variables with protocol expres-

sions. Another issue, addressed by associating hypotheses with a proof about a template,

is that a refinement may not apply to all protocols, but only to protocols that satisfy certain

hypotheses.

To give a simple example, suppose we have a protocol containing messages that use

symmetric encryption, and suppose that some useful property of this protocol is preserved

if we replace symmetric encryption by use of a keyed hash. We can capture the relation-

ship between these two protocols by writing an “abstract” protocol template with function

variables in the positions occupied by either encryption or keyed hash. Then the two pro-

tocols of interest become instances of the template. In addition, a similar relationship often

works out for protocol proofs. If we start with a proof of some property of the protocol that

contains symmetric encryption, some branches of the proof tree will establish properties of

symmetric encryption that are used in the proof. If we replace symmetric encryption by a

function variable, then the protocol proof can be used to produce a proof about the protocol

template containing function variables. This is accomplished by replacing each branch that

proves a property of symmetric encryption by a corresponding hypothesis about the func-

tion variable. Once we have a proof for the protocol template obtained by abstracting away

the specific uses of symmetric encryption, we can consider replacing the function variable

with keyed hash. If keyed hash has the properties of symmetric encryption that were used

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 55

in the initial proof, we can use proofs of these properties of keyed hash in place of the

assumptions about the function variable. Thus an abstraction step and an instantiation step

bring us both from a protocol with symmetric encryption to a protocol with keyed hash,

and from a proof of the initial protocol to a proof of the final one. The role of the protocol

template in this process is to provide a unified proof that leads from shared properties of

two primitives (symmetric encryption or keyed hash) to a protocol property that holds with

either primitive.

After describing the formal framework, we illustrate the use of protocol templates with

several examples. As an example of multiple instantiations of a single template, we prove

an authentication property of a generic challenge-response protocol, and then show how

to instantiate the template to ISO-9798-2, ISO-9798-3, or SKID3 [93]. As an example of

one protocol that is an instance of two templates, we show how to reason about an identity-

protection refinement using an authentication template and an encryption template. The

third example compares two key exchange protocol templates, one that can be instantiated

to the ISO-9798 family of protocols, and one that can be instantiated to STS [46] and

SIGMA [74]. The first reflects the key exchange mechanism used in JFKi [8], while the

second corresponds to that of IKE [59], JFKr [8], and IKEv2 [71]. While there has been

considerable debate and discussion in the IETF community about the tradeoffs offered by

these two protocols, previous analyses are relatively low-level and do not illustrate the

design principles involved. However, it is possible to compare the authentication and non-

repudiation properties of the two approaches by comparing the templates.

4.2.1 Cords and Protocol Logic with Function Variables

Like a program module containing functions that are not defined in the module, a cord may

contain functions that are not given a specific meaning in the cord calculus. When a cord

contains undefined functions, the cord cannot be executed as is, but can be used to define a

set of runs if the function is replaced by a combination of defined operations. Since cords

contain functions such as encryption and pairing, it is a simple matter to extend the syntax

with additional function names. Since we will apply substitution for these function names,

and implicitly quantify over their possible interpretations in the protocol logic, we refer to

56 CHAPTER 4. PCL PROOF METHODS

these function names as function variables. The mechanism for substituting an expression

for a function variable, in a manner that treats function arguments correctly, is standard in

higher-order logic. A simple explanation that does not involve lambda calculus or related

machinery is given at the beginning of [54].

In a judgement

Q,Γ ` φ1[P]Aφ2

where Q is a protocol containing function variables, P is one role or initial segment of

a role of the protocol, and Γ denotes the set of assumed properties and invariants. The

formulas in Γ may also contain function variables. The meaning of this judgement is that

for every substitution that eliminates all function variables, any execution of the resulting

protocolQ′ respecting the resulting invariants Γ′ satisfies the resulting formula φ′1[P
′]Aφ

′
2.

Theorem 4.2.1. (Soundness Theorem) Protocol Composition Logic [49, 35, 50, 36] is

sound for protocols and assertions containing function variables. Furthermore, substitu-

tion preserves semantic entailment and validity of formulas.

The proof of this theorem follows the structure of the soundness proof of PCL without

function variables (see Appendix C). The differences arise from the fact that the term

language includes function variables which are universally quantified in the protocol logic.

Therefore, the soundness proof for any axiom that contains an arbitrary term involves an

additional step where the universal quantifier over a function variable is instantiated.

As a technical note for logicians, we also observe that since we do not have any com-

prehension principle for our logic, it is actually reducible to first-order logic by the standard

method of treating function variables as first-order variables via an Apply function. Conse-

quently, our higher-order protocol logic is no less tractable for automated theorem proving

than the logic without function variables.

4.2.2 Abstraction and Refinement Methodology

Protocol Templates: A protocol template is a protocol that uses function variables. An

example of a challenge-response protocol template using the informal trace notation is

given below.

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 57

A→ B : m

B → A : n, F (B,A, n,m)

A→ B : G (A,B,m, n)

Here, m and n are fresh nonces and F and G are function variables. Substituting cryp-

tographic functions for F and G with the parameters appropriately filled in yields concrete

protocols. For example, instantiating F and G to signatures yields the standard signature-

based challenge-response protocol from the ISO-9798-3 family, whereas instantiating F

and G to a keyed hash yields the SKID3 protocol.

Characterizing protocol concepts: Protocol templates provide a useful method for for-

mally characterizing design concepts. Our methodology for formal proofs involves the

following two steps.

1. Assuming properties of the function variables and some invariants, prove properties

of the protocol templates. Formally,

Q,Γ ` φ1[P]Aφ2

Here, Q is an abstract protocol and P is a program for one role of the protocol. Γ

denotes the set of assumed properties and invariants.

2. Instantiate the function variables to cryptographic functions and prove that the as-

sumed properties and invariants are satisfied by the obtained protocol. Hence con-

clude that this protocol possesses the security property characterized by the protocol

template.

If Q′ ` Γ′, then Q′ ` φ′1[P
′]Aφ

′
2

Here, the primed versions of the protocol, hypotheses, etc. are obtained by applying

the substitution σ used in the instantiation.

The correctness of the method is an immediate corollary of Theorem 4.2.1.

58 CHAPTER 4. PCL PROOF METHODS

Combining protocol templates: Protocol templates can also be used to formalize the

informal practice of protocol design by combining different mechanisms. The key obser-

vation is that if a concrete protocol is an instantiation of two different protocol templates,

each instantiation respecting the assumed invariants associated with the template, then the

concrete protocol has the security properties of both templates. Our methodology involves

the following three steps.

1. Identify two protocol templates which guarantee certain security properties under

some assumptions.

Q1,Γ1 ` φ11[P1]Aφ21 and Q2,Γ2 ` φ12[P2]Aφ22

Here, Q1 and Q2 are protocol templates; P1 and P2 are respectively the programs

corresponding to a specific role; and Γ1 and Γ2 denote the sets of assumed properties

and invariants.

2. Find substitutions σ1 and σ2 such that the two instantiated protocols and roles are

identical, i.e.,

σ1Q1 = σ2Q2 = Q′ and σ1P1 = σ2P2 = P ′

3. Prove that the instantiated protocol satisfies the hypotheses of both the protocol tem-

plates. Hence conclude that it inherits the security properties of both.

If Q′ ` Γ′1 ∪ Γ′2, then Q′ ` (φ′11 ∧ φ
′
12)[P

′]A(φ′21 ∧ φ
′
22)

Here, the primed versions of the protocol, hypotheses, etc. are obtained by applying

the substitutions σ1 and σ2 used in the instantiations.

4.2.3 Illustrative Examples

In this section, we present several examples illustrating the abstraction-instantiation method-

ology. The protocols considered include real-world protocols from the ISO and IKE fami-

lies.

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 59

ISO +

(Concrete Protocols)

(Abstract Protocols)

Encryption

MQV
(DH)

Diffie
Hellman ISO−9798−2SKID3ISO−9798−3

(CR)

Challenge−Response

Identity

Template Combination

Instantiated Templates

Templates

Template CR Template IICR Template ITemplate

Template

Key Computation

STS−KSIGMA

STS−MQVSTS−DH
Protection

Figure 4.1: Illustrating the Methodology

Characterizing Protocol Concepts

A protocol template can be instantiated to multiple protocols. Security proofs of instances

of a template follow from the proof of the template plus a (usually much simpler) proof

that the instances satisfy the assumed hypotheses. In what follows, we work through an

example demonstrating the approach.

Example: Challenge-Response Template In our first example, we characterize a challenge-

response protocol template and then obtain three protocols: ISO-9798-2, ISO-9798-3, and

SKID3 by appropriate substitutions. In doing so, we follow the two step methodology

outlined in Section 4.2.2.

Step 1: The first step is to precisely define and characterize the protocol template. This

involves defining the template (denoted QCR in the sequel) as a cord space, expressing the

security property achieved, and identifying the set of assumptions under which the property

holds. The programs for the initiator and responder roles of QCR is written out below in

60 CHAPTER 4. PCL PROOF METHODS

the notation of cords.

InitCR = (νm) 〈{Â, B̂,m}〉

({B̂, Â, n, F (B̂, Â, n,m)})

〈{Â, B̂, G(Â, B̂,m, n)}〉

RespCR = ({Ŷ , B̂, y})

(νx) 〈{B̂, Ŷ , x, F (B̂, Ŷ , x, y)}〉

({Ŷ , B̂, G(Ŷ , B̂, y, x)})

Here, F and G are function variables. Under a set of assumptions (ΓCR) about these

variables, we prove an authentication property for the initiator of the protocol using the

logic (see Table 4.4 for the complete formal proof).

QCR,ΓCR ` [InitCR]A Honest(Â) ∧Honest(B̂) ⊃ φauth

Intuitively, this formula means that if A executed a session of QCR supposedly with B

and both of them are honest (implying that they strictly follow the protocol and do not,

for example, reveal their private keys), then the authentication property expressed by the

formula φauth holds in the resulting state. φauth specifies an authentication property for the

initiator based on the concept of matching conversations [46]. Simply put, it requires that

whenever A completes a session supposedly with B, both A and B have consistent views

of the run, i.e., they agree on the content and order of the messages exchanged. Formally,

φauth ≡ ∃B.(ActionsInOrder(

Send(A, {Â, B̂,m}),

Receive(B, {Â, B̂,m}),

Send(B, {B̂, Â, n, F (B̂, Â, n,m)}),

Receive(A, {B̂, Â, n, F (B̂, Â, n,m)}),

Send(A, {Â, B̂, G(Â, B̂,m, n)}),

Receive(B, {Â, B̂, G(Â, B̂,m, n)})))

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 61

The set of assumptions ΓCR used to prove the authentication property consists of the

following four logical formulas:

γ1 ≡ Computes(X,F (B̂, Â, n,m)) ⊃

(∃A′.X = A′) ∨ (∃B′.X = B′)

γ2 ≡ � Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , x}, F (B̂, Â, n,m))

γ3 ≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, Ŷ , x, y)}, F (B̂, Â, n,m)) ⊃

X̂ = B̂ ∧ Ŷ = Â ∧ n = y ∧m = x

γ4 ≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , x, F (X̂, Ŷ , x, y)}, F (B̂, Â, n,m)) ⊃

X̂ = B̂ ∧ Ŷ = Â ∧ n = x ∧m = y

Informally, assumption γ1 states that the function F is hard to compute: only agents Â and

B̂ can compute F (B̂, Â, n,m) (more precisely, if some session X has enough information

to compute F (B̂, Â, n,m) then X is either a session of agent Â or agent B̂). The honesty

of Â and B̂ is a part of the premise and have been omitted to improve readability. In a

concrete protocol, this assumption can be satisfied by, for example, instantiating F to a

signature. The other assumptions impose syntactic constraints on F and G. For example,

γ2 implies that F (B̂, Â, n,m) cannot be mistaken for a nonce. This obviates certain type

confusion attacks. γ4 implies that F depends on the value of all four parameters.

Proof Structure of Challenge-Response Template: A complete proof of the authentica-

tion property for the initiator role of the challenge-response template is given in Table 4.4.

The leftmost column identifies the axioms and rules used in the corresponding step, where

the naming convention follows [36] and Section 4.2.4. The proof naturally breaks down

into four parts:

• Line (1) asserts what actions were executed by Alice in the initiator role. Specifically,

we can conclude that Alice has received a message msg containing F (B̂, Â, n,m).

62 CHAPTER 4. PCL PROOF METHODS

F (X,Y, x, y) ≡ EKXY
(x, y,X) HKXY

(x, y,X) SIGX(x, y, Y)
G(X,Y, x, y) ≡ EKXY

(y, x) HKXY
(y, x,X) SIGX(y, x, Y)

A→ B : m A→ B : m A→ B : m

B → A : n,EKAB
(n,m,B) B → A : n,HKAB

(n,m,B) B → A : n, SIGB(n,m,A)
A→ B : EKAB

(n,m) A→ B : HKAB
(n,m,A) A→ B : SIGA(n,m,B)

ISO 9798-2 SKID3 ISO 9798-3

Figure 4.2: Instantiations of the Challenge-Response template

• In lines (2)–(9), we track the source of term F (B̂, Â, n,m) received by Alice. Since

Alice received a message containing F (B̂, Â, n,m), there must be a process which

computed that term and sent it out. Using the assumption γ1, we can conclude that

only Alice or Bob could have computed F (B̂, Â, n,m). From assumptions γ2, γ3, γ4,

we can deduce that Alice did not send F (B̂, Â, n,m). Therefore, Bob must have sent

a message msg′ containing F (B̂, Â, n,m).

• In lines (10)–(13), we use the honesty rule, and assumptions γ2, γ3, γ4 to conclude

that Bob must have sent F (B̂, Â, n,m) as part of the second message of the responder

role. Therefore, Bob must have received a corresponding first message in the past.

Also, using γ4, we can conclude that Bob is in a session with Alice.

• Finally, in lines (14)–(19), the temporal ordering rules are used to establish a total

ordering among the send-receive actions of Alice and Bob. Line (17) concludes that

Bob must have received msg1 after Alice sent it since msg1 contains a fresh nonce.

Line (18) uses the same argument for msg2 sent by Bob. Finally, line (19) uses the

transitivity axiom to conclude that the authentication formula φauth is true.

This completes the characterization of the protocol template. We are now ready to move

on to Step 2.

Step 2: In this step, we instantiate the protocol template to three well known protocols

from the ISO family. The substitutions for the function variables and the resulting protocols

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 63

are shown in Figure 4.2. ISO 9798-2, SKID3, and ISO 9798-3 [93] respectively use sym-

metric key encryption with a pre-shared key, keyed hash and signatures to instantiate F and

G. These substitutions respect the assumed invariants in ΓCR. For example, γ1 is satisfied

by signatures since the signature can be computed only by an agent who has the corre-

sponding private key. (The formal proofs follow immediately from logical axioms and are

omitted.) We can therefore conclude that all three protocols guarantee the authentication

property characterized by the protocol template.

Note that we have only proved the authentication property for the initiator in the proto-

col. To complete the proof of the mutual authentication property, we need to prove a for-

mula analogous to φauth for the responder. This is achieved using symmetric assumptions

about function variable G. All three instantiations satisfy these additional assumptions.

Combining Protocol Templates

A refinement operation, when applied to a protocol, adds an additional security property

while preserving the original properties. Examples of refinement operations considered

in [35] include replacing signatures by encrypted signatures to provide identity protection

and replacing fresh Diffie-Hellman exponentials by a pair consisting of a stale exponential

and a fresh nonce, thereby enabling reuse of exponentials and hence greater computational

efficiency. The methodology for combining protocol templates, described in Section 4.2.2,

provides a way to formally reason about a broad class of refinements including the two just

mentioned. Below we illustrate the general method by examining the identity protection

refinement in some detail.

Example: Identity Protection Refinement In this example, we start with a signature

based protocol, ISO-9798-3, that provides mutual authentication. We apply the identity

protection refinement to it, which involves replacing the signatures by encrypted signatures

using a shared key. The intention is to prevent adversaries from observing signatures since

they can reveal identities of communicating peers. Our goal is to prove that this refinement

step is correct, i.e., it does indeed guarantee that the resulting protocol provides identity

protection, while preserving the mutual authentication property of the original protocol.

We identify two templates: QCR, the challenge-response template described in the previous

64 CHAPTER 4. PCL PROOF METHODS

section, and QENC described below, which provides a form of secrecy. The aim now is to

prove that the protocol obtained after the refinement step is an invariant respecting instance

of both these templates and the terms protected by the secrecy template are precisely the

signatures.

Step 1: The QCR template has been defined and characterized in an earlier section. Here,

we do the same for the QENC template. Using the informal arrows-and-messages diagram,

the template can be described as follows.

A→ B : m

B → A : n,EKAB
(H(B,A, n,m))

A→ B : EKAB
(I(A,B,m, n))

The programs for the initiator and responder roles of QENC is written out below in the

notation of cords.

InitENC = (νm) 〈{Â, B̂,m}〉

({B̂, Â, n,EKAB
(H(B̂, Â, n,m))})

〈{Â, B̂, EKAB
(I(Â, B̂,m, n))}〉

RespENC = ({Ŷ , B̂, y})

(νx) 〈{B̂, Ŷ , x, EKBY
(H(B̂, Ŷ , x, y))}〉

({Ŷ , B̂, EKBY
(I(Ŷ , B̂, y, x))})

Here, H and I are function variables. Under a set of assumptions (ΓENC) about these

variables, we prove that the term H(B̂, Â, n,m) remains secret: it is known only to A and

B. Formally,

QENC ,ΓENC ` [InitENC]A Honest(Â) ∧ Honest(B̂) ⊃

φsecret

Intuitively, this formula means that if A executed a session of QENC supposedly with

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 65

F (X,Y, x, y) ≡ EKXY
(SIGX(x, y))

G(X,Y, x, y) ≡ EKXY
(SIGX (y, x)) A→ B : m

B → A : n,EKAB
(SIGB(n,m))

H(X,Y, x, y) ≡ SIGX(x, y) A→ B : EKAB
(SIGA(n,m))

I(X,Y, x, y) ≡ SIGX(y, x)

Figure 4.3: Protocol that is an instantiation of both CR and ENC templates

B and both of them are honest, then the secrecy property expressed by the formula φsecret

holds in the resulting state. φsecret specifies the secrecy property for the termH(B̂, Â, n,m).

Formally,

φsecret ≡ ∃B.(Has(X,H(B̂, Â, n,m)) ⊃

(X = A ∨X = B))

The set of assumptions ΓENC used to prove the authentication property consists of the

following four logical formulas:

δ1≡Computes(X,H(B̂, Â, n,m)) ⊃ ∃B.X = B

δ2≡ � Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , x},H(B̂, Â, n,m))

δ3≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , EKXY
(I(X̂, Ŷ , x, y))},H(B̂, Â, n,m))

⊃ (X̂ = B̂ ∧ n = y ∧m = x)

δ4≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , x, EKXY
(H(X̂, Ŷ , x, y))},

H(B̂, Â, n,m)) ⊃ (X̂ = B̂ ∧ n = x ∧m = y)

These formulas capture simple ideas, e.g., H(B̂, Â, n,m) (e.g. B′s signature) can be

computed only by B and certain syntactic constraints, e.g., a signature is not a subterm of

a nonce.

66 CHAPTER 4. PCL PROOF METHODS

Step 2: The second step is to find substitutions σ1 and σ2 such that both the templates

(QCR and QENC) instantiate to the same real protocol. The desired substitutions are shown

in Figure 4.3. σ1 is on the left, σ2 is on the right and the instantiated protocol is in the

middle of the figure.

Step 3: The final step is to verify that the instantiated protocol satisfies the union of the

hypotheses in ΓCR and ΓENC . This follows easily from the properties of signature and

encryption under symmetric key as expressed in the logic and the syntactic structure of the

protocol. We can therefore conclude that the identity protection refinement operation as

applied here is correct, i.e., it adds the identity protection property while preserving the

original properties of the protocol (which in this case is mutual authentication).

Authenticated Key-Exchange Templates

An important use of protocol templates is to underpin basic principles used in designing

classes of protocols and to bring out subtle tradeoffs offered by various protocol families.

In this section, we examine two families of authenticated key exchange protocols. The first

template, AKE1, generalizes a family of protocols in which authentication is achieved by

explicitly embedding the intended recipient’s identity inside authenticators in messages.

This family includes the ISO-9798-3 key exchange protocol and related protocols includ-

ing the core JFKi protocol. The second template, AKE2, generalizes a family of protocols

where agents authenticate each other using a combination of signatures and a proof of pos-

session of the Diffie-Hellman shared secret computed during the execution of the protocol.

This family includes STS, SIGMA, and the core of the IKE and JFKr protocols. Part of

the reason these two families are interesting is that they were both candidates for the re-

cently proposed IKEv2 protocol and there has been considerable discussion and debate in

the IETF community about the tradeoffs offered by the two designs. The use of templates

to characterize the two families sheds light on the subtle difference between the authenti-

cation, non-repudiation and identity protection guarantees associated with the two sets of

protocols.

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 67

Template AKE1: Using the informal arrows-and-messages diagram, the authenticated

key-exchange template AKE1 can be described as follows.

A→ B : A, ga

B → A : gb, F (B,A, gb, ga)

A→ B : G(A,B, ga, gb)

For this template, we are able to prove both secrecy and authentication for the initiator

role:

QAKE1,ΓAKE1 ` [InitAKE1]AHonest(Â) ∧ Honest(B) ⊃

φauth ∧ φshared−secret

The formula φauth describes an authentication property for the initiator based on matching

conversations, while formula φshared−secret states that A and B are the only two sessions

which know the Diffie-Hellman secret gab. The set of assumptions ΓAKE1 is similar to ΓCR

in Section 4.2.3:

ε1≡Computes(X,F (B̂, Â, gb, ga)) ⊃ ∃B′.X = B′

ε2≡ � Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , gx}, F (B̂, Â, gb, ga))

ε3≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, Ŷ , gx, gy)}, F (B̂, Â, gb, ga)) ⊃

(X̂ = B̂ ∧ Ŷ = Â ∧ gb = gy ∧ ga = gx)

ε4≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , gy, F (X̂, Ŷ , gx, gy)}, F (B̂, Â, gb, ga)) ⊃

(X̂ = B̂ ∧ Ŷ = Â ∧ gb = gx ∧ ga = gy)

We prove that the ISO-9798-3 key exchange protocol satisfies the set of assumptions,

ΓAKE1, and therefore provides similar authentication and secrecy guarantees. However,

STS, SIGMA and their variants do not satisfy ΓAKE1. Specifically, the assumption ε4

fails since the intended recipient’s identity is not embedded inside an authenticator in the

second message of the protocol. The way the proof fails leads us to a run which provides a

68 CHAPTER 4. PCL PROOF METHODS

A→ B : ga ga ga

B → A : gb, SIGB(gb, ga, A) gb, Egab(SIGB(ga, gb)) gb, SIGB(gb, ga),Hgab(B)

A→ B : SIGA(ga, gb, B) Egab(SIGA(gb, ga)) SIGA(gb, ga),Hgab(A)

ISO 9798-3 Key exchange STS Basic SIGMA

Figure 4.4: Instantiations of authenticated key-exchange templates

counterexample to the strong authentication property. This works for both STS and SIGMA

and the run is essentially similar to the “attack” on STS first demonstrated by Lowe in [79].

Template AKE2: Using the informal arrows-and-messages diagram, AKE2 can be de-

scribed as follows.

A→ B : ga

B → A : gb, F (B, gb, ga), F ′(B, gab)

A→ B : G(A, ga, gb), G′(A, gab)

Informally, the purpose of F is to ensure that B is a session with parameters ga and

gb, while F ′ proves that B has the shared secret gab. More precisely, using the set of

assumptions about the function variables ΓAKE2, it is possible to prove that this protocol

template provides a form of authentication – matching conversations for the responder:

QAKE2,ΓAKE2 ` [InitAKE2]BHonest(Â) ∧ Honest(B̂) ⊃

φauth ∧ φshared−secret

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 69

The set of assumptions ΓAKE2 is:

η1≡Computes(X,G(Â, ga, gb)) ⊃ ∃A′.X = A′

η2≡Computes(X,F ′(Ẑ, gab)) ⊃ Has(X, gab)

η3≡ � Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , gx}, G(Â, ga, gb))

η4≡ � Fresh(Z, x) ∧ � Fresh(W,y) ⊃

¬Contains({X̂, Ŷ , gy, F (X̂, gx, gy), F ′(X̂, gxy)},

G(Â, ga, gb))

η5≡ � Fresh(Z, x) ∧ � Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, gx, gy), G′(X̂, gxy)}, G(Â, ga, gb))

⊃ (X̂ = Â ∧ ∧gb = gx ∧ ga = gy)

However, as mentioned before, this class of protocols does not have the matching conver-

sations based authentication property for the initiator.

Design Tradeoffs Template AKE1 provides a stronger form of authentication: matching

conversations for both initiator and responder whereas AKE2 only provides matching con-

versations for responder. Therefore, in AKE1, the initiator is required to reveal his identity

in the first message of the protocol, and hence instances of this template cannot provide

identity protection against active attackers for the initiator. Additionally, assumptions ε1

and ε3 together imply that when the function variable F is instantiated to the signature

function, A has a non-repudiable proof of communication with B. In the logic, such a

proof just uses terms that A possesses (given by the Has predicate) and the honesty of B.

One of the design goals for instances of the AKE2 template such as SIGMA [74] was to

provide identity protection for the initiator. Since the initiatorA can only reveal his identity

in the third message of the protocol, and cannot be sure that the responder B knows he is

talking to A until B receives the last message, template AKE2 does not provide the strong

70 CHAPTER 4. PCL PROOF METHODS

authentication property for the initiator. A counterexample run is shown below:

A→ I(B) : ga

I(C)→ B : ga

B → I(C) : gb, F (B, gb, ga), F ′(B, gab)

I(B)→ A : gb, F (B, gb, ga), F ′(B, gab)

A→ I(B) : G(A, ga, gb), G′(A, gab)

In this scenario, A believes he has completed a session with B, while B is waiting for

the third message, thinking that he is engaged in a session with C. This counterexample

also shows that A’s transcript of the run cannot be used to prove that B was involved in the

protocol. Hence this template does not provide non-repudiation even when F is instantiated

to the signature function.

4.2.4 Protocol Logic Extensions

Most of the predicates and axioms of protocol logic used in the formal proofs in this chapter

are presented in Chapter 3. The main extensions include the Computes predicate and some

axioms for reasoning about symmetric encryption and cryptographic hash. The definition

of Computes in terms of Has and the axioms it satisfies is presented in Table 4.5. Intuitively,

CP2 says that there are two ways an agent can possess some term: she can construct it

from its components or she can receive it as a part of some message. Axiom CP3 says that

every term that appears on the network has a source: it originated from some process that

actually computed the term. One use of Computes is to reason about the source of a term.

This is useful for reasoning about authentication properties of protocols. A second use

is to capture hardness assumptions about cryptographic primitives, which is important for

reasoning about secrecy. For example, we postulate that the only way to compute a Diffie-

Hellman secret is to have one exponent and the other exponential. Similarly, in order to

compute an encrypted message, it is essential to possess the key and the plaintext.

4.2. ABSTRACTION-REFINEMENT PROOF METHOD 71

AA1,T1,P1 [InitCR]A
�

Receive(A,msg) ∧ Contains(msg, F (B̂, Â, n,m)) (4.1)

CP3, (1) [InitCR]A ∃X.∃msg
′.(Computes(X,F (B̂, Â, n,m)) ∧�

Send(X,msg′) ∧ Contains(msg′, F (B̂, Â, n,m))) (4.2)

ΓCR Computes(X,F (B̂, Â, n,m)) ⊃ (∃A′.X = A′) ∨ (∃B′.X = B′) (4.3)

HON Honest(Ŷ) ∧
�

Send(Y,msg′) ⊃ ∃X.∃x.∃y.(
�

Fresh(Y, y) ∧

(msg′ = {Ŷ , X̂, y} ∨

msg′ = {Ŷ , X̂, y, F (Ŷ , X̂, y, x)} ∨

msg′ = {Ŷ , X̂, G(Ŷ , X̂, y, x)}) (4.4)

ΓCR ¬Contains({Â, X̂,m′}, F (B̂, Â, n,m)) (4.5)

ΓCR Contains({Â, X̂, G(Â, X̂,m′, x)}, F (B̂, Â, n,m)) ⊃ Â = B̂ (4.6)

ΓCR Contains({Â, X̂,m′, F (Â, X̂,m′, x)}, F (B̂, Â, n,m)) ⊃ Â = B̂ (4.7)

(4− 7) Honest(Â) ∧
�

Send(A′, msg′) ∧ Contains(msg′, F (B̂, Â, n,m)) ⊃

Â = B̂ (4.8)

(2− 3), (8) [InitCR]A Honest(Â) ⊃ ∃B.∃msg′.(Computes(B,F (B̂, Â, n,m)) ∧�
Send(B,msg′) ∧ Contains(msg′, F (B̂, Â, n,m))) (4.9)

ΓCR ¬Contains({B̂, X̂, n′}, F (B̂, Â, n,m)) (4.10)

ΓCR Contains({B̂, X̂, G(B̂, X̂, n′, x)}, F (B̂, Â, n,m)) ⊃ m = n′ (4.11)

ΓCR Contains({B̂, X̂, n′, F (B̂, X̂, n′, x)}, F (B̂, Â, n,m)) ⊃

Â = B̂ ∧ n = n′ ∧ x = m (4.12)

(4), (9− 12) [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃ ∃B.

(
�

Send(B, {B̂, X̂, G(B̂, X̂, n′, x)}) ∧
�

Fresh(B, n′) ∧ n′ = m) ∨

(
�

Send(B, {B̂, Â, n, F (B̂, Â, n,m)})) (4.13)

AN3,P1 [InitCR]A
�

Fresh(A,m) (4.14)

(13− 14) [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃�
Send(B, {B̂, Â, n, F (B̂, Â, n,m)}) (4.15)

(15),HON [InitCR]A Honest(A) ∧ Honest(B̂) ⊃ ActionsInOrder(

Receive(B, {Â, B̂, n}), Send(B, {Â, B̂, n, F (B̂, Â, n,m)})) (4.16)

F,AF3 [InitCR]A After(Send(A, {Â, B̂, n}),Receive(B, {Â, B̂, n})) (4.17)

F,AF3,HON [InitCR]A Honest(B̂) ⊃ After(Send(B, {Â, B̂, n, F (B̂, Â, n,m)}),

Receive(A, {Â, B̂, n, F (B̂, Â, n,m)})) (4.18)

AF1,AF2 [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃ φauth (4.19)

Table 4.4: Deductions of Â executing InitCR role

72 CHAPTER 4. PCL PROOF METHODS

CP1 Computes(X, t) ⊃ Has(X, t)

CP2 Has(X, t) ⊃ (Computes(X, t) ∨

∃m.(
�

Receive(X,m) ∧ Contains(m, t)))

CP3 (
�

Receive(X,m) ∧ Contains(m, t)) ⊃

∃Y.∃m′.(Computes(Y, t) ∧
�

Send(Y,m′) ∧ Contains(m′, t))

Computes(X, t) ≡ (t = gab ∧ ComputesDH(X, gab)) ∨

(t = H(a) ∧ ComputesHASH(X,H(a))) ∨

(t = Ea(b) ∧ ComputesENC(X,Ea(b)))

ComputesDH(X, gab) ≡ ((Has(X, a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

ComputesENC(X,Ea(b)) ≡ Has(X, a) ∧ Has(X, b)

ComputesHASH(X,H(a)) ≡ Has(X, a)

Table 4.5: Computes Axioms

Chapter 5

Complexity-Theoretic Foundations for

PCL

Security analysis of network protocols is a successful scientific area with two important

but historically independent foundations, one based on logic and symbolic computation,

and one based on computational complexity theory. The symbolic approach, which uses a

highly idealized representation of cryptographic primitives, has been a successful basis for

formal logics and automated tools. Conversely, the computational approach yields more

insight into the strength and vulnerabilities of protocols, but it is more difficult to apply and

it involves explicit reasoning about probability and computational complexity. The purpose

of this chapter is to suggest that formal reasoning, based on an abstract treatment of cryp-

tographic primitives, can be used to reason about probabilistic polynomial-time protocols

in the face of probabilistic polynomial-time attacks. We do this by proposing a new seman-

tics for a variant of PCL. The new semantics brings forward some interesting distinctions

that were not available in the coarser symbolic model, and also raises some apparently

fundamental issues about the inherent logic of asymptotic probabilistic properties.

Our central organizing idea is to interpret formulas as operators on probability distribu-

tions on traces. Informally, representing a probability distribution by a set of equi-probable

traces (each tagged by the random sequence used to produce it), the meaning of a formula ϕ

on a set T of traces is the subset T ′ ⊆ T in which ϕ holds. This interpretation yields a prob-

ability: the probability that ϕ holds is the ratio |T ′|/|T |. Conjunction and disjunction are

73

74 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

simply intersection and union. There are several possible interpretations for implication,

and it is not clear at this point which will prove most fruitful in the long run. In the present

paper, we interpret ϕ =⇒ ψ as the union of ¬ϕ and the composition of ψ with ϕ; the latter

is also the conditional probability of ψ given ϕ. This interpretation supports a soundness

proof for a sizable fragment of the protocol logic, and resembles the probabilistic interpre-

tation of implication in [107]. Since the logic does not mention probability explicitly, we

consider a formula “true” if it holds with asymptotically overwhelming probability.

In PCL, the atomic formula Has(X,m) means that m is in the set of values “derivable,”

by a simple fixed algorithm, from information visible to X . The simple fixed algorithm

is central to what is called the Dolev-Yao model, after [48] and much subsequent work by

others. In replacing the symbolic semantics with a computational semantics based on prob-

abilistic polynomial time, we replace the predicate Has with two predicates, Possess and

Indist. Intuitively, Possess(X,m) means that there is an algorithm that computes the value

of m with high probability from information available to X , while Indist(X,m) means that

X cannot feasibly distinguishm from a random value chosen according to the same distri-

bution. However, certain technical problems discussed in Section 5.6 lead us to work with

slightly simplified semantics of these predicates that capture our intuition most strongly

when the possessing principal is assumed honest (in the sense of following the protocol)

and the predicate Indist only appears with positive polarity. Fortunately, these syntactic

conditions are met in many formulas expressing authentication and secrecy properties.

5.1 Protocol Syntax

We use a simple “protocol programming language” based on [50, 35, 38] to represent a

protocol by a set of roles, such as “Initiator”, “Responder” or “Server”, each specifying a

sequence of actions to be executed by a honest participant. Since there are some differences

from the syntax presented in Chapter 3, the syntax of terms and actions is given in Table 5.1.

Names, sessions and threads: We use X̂, Ŷ , . . . as names for protocol participants. Since

a particular participant might be involved in more than one session at a time, we will give

unique names to sessions and use (X̂, s) to designate a particular thread being executed

by X̂ . All threads of a participant X̂ share the same asymmetric key denoted by X . As a

5.1. PROTOCOL SYNTAX 75

Terms:
N ::= X̂ (name)
K ::= X (key)
S ::= s (session)
n ::= r (nonce)
T ::= (N, S) (thread)
V ::= x (term variable)
tB ::= V |K |T |N |n | 〈tB, tB〉 (basic term)
t ::= tB | {t}

n
K |〈t, t〉 (term)

Actions:
a ::=
| new T, n
| V := enc T, t,K
| V := dec T, t,K
| [T =,]t/t
| send T, t
| receive T, V

Table 5.1: Syntax of protocol terms and actions

notational convenience, we will sometimes write X̃ for an arbitrary thread of X̂.

Terms, actions, and action lists: Terms name messages and their parts, such as nonces,

keys, variables and pairs. For technical reasons, we distinguish basic terms from terms that

may contain encryption. To account for probabilistic encryption, encrypted terms explicitly

identify the randomness used for encryption. Specifically, {t}n
K indicates the encryption

of t with key K using randomness n generated for the purpose of encryption. We write

m ⊆ m′ when m is a subterm of m′ ∈ t.

Actions include nonce generation, encryption, decryption, pattern matching, and com-

munication steps (sending and receiving). An ActionList consists of a sequence of actions

that contain only basic terms. This means that encryption cannot be performed implicitly;

explicit enc actions, written as assignment, must be used instead. We assume that each

variable will be assigned at most once, at its first occurrence. For any s ∈ ActionList,

we write s|X to denote the subsequence of s containing only actions of a participant (or a

thread) X .

Strands, roles, protocols and execution: A strand is an ActionList, containing actions

of only one thread. Typically, we will use the notation [ActionList]X̃ to denote a strand

executed by thread X̃ and drop the thread identifier from the actions themselves. A role

is a strand together with a basic term representing the initial knowledge of the thread. A

protocol is a finite set of Roles, together with a basic term representing the initial intruder

knowledge.

76 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

Action Predicates:
a ::= Send(T, t) |Receive(T, t) |New(T, n)

Formulas:
ϕ ::= a | t = t | Start(T) |Possess(T, t) | Indist(T, t) | Fresh(T, t) |Honest(N) |

Start(T) |Contains(t, t) |ContainsOut(t, t, t) |DecryptsHonest(T, t) |
Source(T, t, t) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V ar. ϕ | ∀V ar. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Strand]T ϕ

Table 5.2: Syntax of the logic

An execution strand is a pair ExecStrand ::= InitialState(I);ActionList where I

is a data structure representing the initial state of the protocol, as produced by the initial-

ization phase from Section 5.5. In particular, this includes the list of agents and threads,

the public/private keys and honesty/dishonesty tokens of each agent, and the roles played

by each thread.

5.2 Logic Syntax

The syntax of formulas is given in Table 5.2. Most formulas have the same intuitive mean-

ing in the computational semantics as in the symbolic model [35, 38], except for predicates

Possess and Indist. We summarize the meaning of formulas informally below, with precise

semantics in the next section.

For every protocol action, there is a corresponding action predicate which asserts that

the action has occurred in the run. For example, Send(X̃, t) holds in a run where the thread

X̃ has sent the term t. Fresh(X̃, t) means that the value of t generated by X̃ is “fresh” in the

sense that no one else has seen any messages containing t, while Honest(X̂) means that X̂

is acting honestly, i.e., the actions of every thread of X̂ precisely follows some role of the

protocol. The Source predicate is used to reason about the source of a piece of information,

such as a nonce. Intuitively, the formula Source(Ỹ , u, {m}rX) means that the only way for

a thread X̃ different from Ỹ to know u is to learn u from the term {m}rX , possibly by some

5.3. PROOF SYSTEM 77

indirect path.

The predicate Fresh is definable by Fresh(X̃, v) ≡ New(X̃, v) ∧ ¬(∃u. Send(X̃, u) ∧

Contains(u, v)) and classical implication is definable by A ⊃ B ≡ ¬A ∨ B.

In the symbolic model [35, 38],the predicate Has states that a principal can “derive”

a message or its contents from the information gathered during protocol execution. We

use Possess(X̃, t) to state that it is possible to derive t by Dolev-Yao rules from X̃’s view

of the run and Indist(X̃, t) to state that no probabilistic polynomial-time algorithm, given

X̃’s view of the run, can distinguish t from a random value from the same distribution.

Typically, we use Possess to say that some honest party obtained some secret, and Indist to

say that the attacker does not have any partial information about a secret.

5.3 Proof System

The proof system used in this chapter is based on the proof system developed in [35, 38, 11].

Some example axioms and rules are given in Table 5.3. These axioms express reasoning

principles that can be justified using complexity-theoretic reductions, information-theoretic

arguments, and asymptotic calculations. However, the advantage of the proof system is

that its justification using cryptographic-style arguments is a one-time mathematical effort;

protocol proofs can be carried out symbolically using the proof system without explicitly

reasoning about probability and complexity. Another advantage of the axiomatic approach

is that different axioms and rules rest on different cryptographic assumptions. Therefore,

by examining the axioms and rules used in a specific proof, we can identify specific prop-

erties of the cryptographic primitives that are needed to guarantee protocol correctness.

This provides useful information in protocol design because primitives that provide weaker

properties often have more efficient constructions.

Axioms: Axioms AN2 and AN3 capture some of the properties of nonce generation.

Informally, AN2 states that if a thread X̃ generates a fresh nonce x and does not perform

any additional actions, then x is indistinguishable from a random value for all other threads.

The soundness of this axiom is established by a simple information-theoretic argument.

The informal interpretation of axiom S1 (also called the “Source” axiom) is that, unless a

ciphertext is decrypted, a thread which does not possess the decryption key cannot extract

78 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

Axioms:

AN2 : >[new x]X̃ Ỹ 6= X̃ ⇒ Indist(Ỹ , x)

AN3 : >[new x]X̃Fresh(X̃, x)

S1 : Source(Ỹ , u, {m}rX) ∧ ¬DecryptsHonest(X̂, {m}rX) ∧ Ẑ 6= X̂ ∧ Ẑ 6= Ŷ ∧

Honest(X̂) ∧ Honest(Ŷ)⇒ Indist(Z̃, u)

Proof rules:

θ[P]Xϕ θ′ ⊃ θ ϕ ⊃ ϕ′

θ′[P]Xϕ
′ G3

θ[P1]Xϕ ϕ[P2]Xψ
θ[P1P2]Xψ

SEQ

ϕ ϕ⇒ ψ
ψ

MP
ϕ
∀x.ϕ GEN

Table 5.3: Fragment of the proof system

any partial information about the plaintext. The soundness of this axiom is proved by a

complexity-theoretic reduction. Specifically, we show that if an attacker can break this

property, then there is another attacker that can break the underlying IND-CCA2 secure

encryption scheme [18].

Inference rules: Inference rules include generic rules from modal logics (e.g. G3), se-

quencing rule SEQ used for reasoning about sequential composition of protocol actions

and a rule (called the honesty rule) for proving protocol invariants using induction. These

rules are analogous to proof rules from our earlier work [35, 38].

First-order axioms and rules: We use two implications: a conditional implication ⇒,

discussed and defined precisely in section 5.6, and a classical implication⊃ withA ⊃ B ≡

¬A ∨B. While standard classical tautologies hold for classical implication, some familiar

propositional or first-order tautologies may not hold when written using ⇒ instead of ⊃.

However, modus ponens and the generalization rule above are sound. The soundness of

modus ponens relies on the simple asymptotic fact that the sum of two negligible functions

is a negligible function. In future work, we hope to develop a more complete proof system

for the first-order fragment of this logic.

5.4. EXAMPLE 79

5.4 Example

In this section, we present a simple protocol and state a secrecy property that can be proved

using the proof system. The interested reader is referred to [50, 35, 38] for further expla-

nation and examples. The two protocol roles are:

Init ≡ [new x; y := enc〈x, X̃〉, Y ; send X̂, Ŷ , y]X̃

Resp ≡ [receive z; [z = /]〈X̂, Ŷ , z′〉; z′′ := dec z′, Y]Ỹ

The initiator generates a new nonce and sends it encrypted to the responder. The responder

receives the message and recovers the nonce by decrypting the ciphertext. We can prove

that if X̃ completes the protocol with Ỹ , then x will be a shared secret between them,

provided both agents are honest. Formally,

Start(X̃)[Init]X̃Honest(X̂) ∧ Honest(Ŷ) ∧ (Z̃ 6= X̃) ∧ (Z̃ 6= Ỹ)⇒ Indist(Z̃, x)

Since the meaning of Indist(Z̃, x) (formally defined in Section 5.6) is that Z̃ cannot distin-

guish the secret nonce x from a randomly chosen nonce, this formula expresses a standard

form of secrecy used in the cryptographic literature.

The axiomatic proof uses AN2, a variant of S1, and modus ponens MP. The proof

idea is that at the point the initiator produces the nonce x, by AN2, it is indistinguishable

from random to everyone else other than X̃ and Ỹ . It continues to remain indistinguishable

since it appears on the network under encryption with a public key whose corresponding

private key is not available to the attacker. This part of the reasoning is codified by an axiom

that is similar to S1 and relies on the fact that the encryption scheme used is IND-CCA2

secure. Modus ponens is used in the general first-order reasoning involved in the proof.

5.5 Protocol Execution

Given a protocol, adversary, and value of the security parameter, we define a set of protocol

traces, each associated with the random bits that produce this sequence of actions and

additional randomness for algorithms used in the semantics of formulas about the run. The

80 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

definition proceeds in two phases. In the initialization phase, we assign a set of roles to

each principal, identify a subset which is honest, and provide all entities with private-public

key pairs and random bits. In the execution phase, the adversary executes the protocol by

interacting with honest principals, as in the accepted cryptographic model of [21].

Initialization: We fix the protocol Q, adversary A, security parameter η, and some ran-

domness R of size polynomially bounded in η. Each principal and each thread (i.e., an

instance of a protocol role executed by the principal) is assigned a unique bitstring iden-

tifier. We choose a sufficiently large polynomial number of bitstrings i ∈ I ⊆ {0, 1}η to

represent the names of principals and threads. Randomness R is split into ri for each hon-

est i ∈ I (referred to as “coin tosses of honest party i”) and RA (referred to as “adversarial

randomness”).

The adversary designates some of the principals as honest and the rest of the principals

as dishonest. Intuitively, honest principles will follow one or more roles of the protocol

faithfully. The adversary chooses a set of threads, and to each thread it assigns a strand

(a program to be executed by that thread), under the restriction that all threads of honest

principals are assigned roles of protocol Q.

The key generation algorithm K of a public-key encryption scheme (K, E ,D) is run

on 1η for each participant a using randomness ra, and producing a public-private key pair

(pka, ska). The public key pka is given to all participants and to the adversaryA; the private

key is given to all threads belonging to this principal and to the adversary if the principal is

dishonest.

Generating Computational Traces: Following [21], we view an agent i trying to commu-

nicate with agent j in protocol session s as a (stateful) oracle Πs
i,j. The state of each oracle

is defined by a mapping λ from atomic symbols to bitstrings (with variables and nonces

renamed to be unique for each role) and a counter c. Each oracle proceeds to execute a step

of the protocol as defined by actions in the corresponding role’s action list, when activated

by the adversary.

We omit the details of communication between the adversary and the oracles, and focus

on computational interpretation of symbolic protocol actions. Let ac be the current action

in the ActionList defining some role of participant i in session s, i.e., Thread = (i′, s′)

5.5. PROTOCOL EXECUTION 81

where i = λ(i′), s = λ(s′).

If ac = (new (i′, s′), v), then update λ so that λ(v) = NonceGen(Ri), whereNonceGen

is a nonce generation function(e.g., NonceGen simply extracts a fresh piece of Ri). If

ac = (v := enc (i′, s′), j, u), then update λ so that λ(v) = E(λ(u), pkj, Ri) where

E(λ(u), pkj, Ri) is the result of executing the public-key encryption algorithm on plaintext

λ(u) with public key pkj and fresh randomness extracted from Ri. For brevity, we omit

computational interpretation of decryption and matching (pairing, unpairing, and equality-

test) actions. Sending a variable send (i′, s′), v is executed by sending λ(v) to the

adversary, and receiving receive (i′, s′), v is executed by updating λ so that λ(v) = m

where m is the bitstring sent by the adversary.

At any time during the protocol execution, the adversary A may record any inter-

nal, private message on a special knowledge tape. This tape is not read by any partici-

pant of the protocol. However, its content will be made available to the test algorithms

used to decide if a given security formula containing Indist(...) is valid or not. Let K be

[(i1, m1), .., (in, mn)] the list of messages mk written by A on the knowledge tape, indexed

by the number of actions ik already executed when mk was written (position in the protocol

execution). This index will be useful to remember a previous state of the knowledge tape.

At the end of the protocol execution, the adversary A outputs a pair of integers (p1, p2)

on an output tape. When the security formula is a modal formula θ[P]Xϕ, these two inte-

gers represent two positions in the protocol execution where the adversary claims that the

formula is violated, i.e. that θ is true in p1 but ϕ is false in p2, with P between p1 and p2.

Let O be this pair (p1, p2) of integers written on the output tape.

The symbolic trace of the protocol is the execution strand e ∈ ExecStrand which

lists, in the order of execution, all honest participant actions and the dishonest participant’s

send and receive actions. This strand contains two parts: InitialState(I) stores the

initialization data, and the rest is an ordered list of all exchanged messages and honest

participants’ internal actions.

Definition 5.5.1. (Computational Traces) Given a protocol Q, an adversary A, a security

parameter η, and a sequence of random bits R ∈ {0, 1}p(η) used by the honest principals

and the adversary, a run of the protocol is the tuple 〈e, λ, O,K,R〉 where e is the symbolic

execution strand, λ : Term(e) → {0, 1}p(η) maps the symbolic terms in e to bitstrings,

82 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

O is the pair of integers written on the output tape, and K is the indexed list of messages

written on the knowledge tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: RT ∈ {0, 1}
p(η), a se-

quence of random bits used for testing indistinguishability, and σ : FV ar(ϕ)→ {0, 1}p(η),

a substitution that maps free variables in a formula to bitstrings. The set of computational

traces is

TQ(A, η) = {〈e, λ, O,K,R,RT , σ〉 |R,RT chosen uniformly}.

Definition 5.5.2. (Participant’s View) Given a protocol Q, an adversary A, a security pa-

rameter η, a participant X̃ and a trace t = 〈e, λ, O,K,R,RT , σ〉 ∈ TQ(A, η), V iewt(X̃)

represents X̃ ′s view of the trace. It is defined precisely as follows:

If X̂ is honest, then V iewt(X̃) is the initial knowledge of X̃ , a representation of e|X̃
and λ(x) for any variable x in e|X̃ . If X̂ is dishonest, then V iewt(X̃) is the union of the

knowledge of all dishonest participants X̃ ′ after the trace t (where V iewt(X̃ ′) is defined as

above for honest participants) plus K, the messages written on the knowledge tape by the

adversary.

The following three definitions are used in the semantics of the predicate Indist(). In-

formally, based on some trace knowledge K, the distinguisher D tries to determine which

of two bitstrings is the value of a symbolic term. One of the bitstrings will be the computa-

tional value of the term in the current run, while the other will be a random bitstring of the

same structure, chosen in a specific way. The order of the two bitstrings presented to the

distinguisher is determined by an LR Oracle using a random selector bit.

Definition 5.5.3. (LR Oracle) The LR Oracle [18] is used to determine the order in which

two bitstrings are presented depending on the value of the selector bit, i.e. LR(s0, s1, b) =

〈sb, s1−b〉.

Definition 5.5.4. (Distinguishing test input) Let u be a symbolic term and σ be a substitu-

tion that maps variables of u to bitstrings. We construct another bitstring f(u, σ, r), whose

symbolic representation is the same as u. Here, r is a sequence of bits chosen uniformly at

random. The function f is defined by induction over the structure of the term u.

• Nonce u : f(u, σ, r) = r

5.6. COMPUTATIONAL SEMANTICS 83

• Name/Key u : f(u, σ, r) = σ(u)

• Pair u = 〈u1, u2〉 : f(〈u1, u2〉, σ, r1; r2) = 〈f(u1, σ, r1), f(u2, σ, r2)〉

• Encryption u = {v}nK: f({v}nK , σ, r1; r2) = E(f(v, σ, r1), σ(K), r2)

Definition 5.5.5. (Distinguisher) A distinguisher D is a polynomial time algorithm which

takes as input a tuple 〈K, t, 〈s0, s1〉, R, η〉, consisting of knowledge K, symbolic term t,

two bitstrings s0 and s1, randomness R and the security parameter η, and outputs a bit b′.

The next definition is used while defining semantics of modal formulas. Given a set

T of traces and a strand P of actions executed by a thread X̃ , the set TP includes only

those traces from T which contain P . Pre(TP) is obtained from TP by taking the initial

segment of each trace upto the point where P starts. The precondition of a modal formula

is evaluated over this set. Post(TP) is similarly defined; the only difference is now the

trace is cut at the point that P ends. The postcondition of a modal formula is evaluated

over this set. The begin and end positions are determined by the component O in the trace.

Definition 5.5.6. (Splitting computational traces) Let T be a set of computational traces

and t = 〈e, λ, O,K,R,RT , σ〉 ∈ T . O = 〈p1, p2〉, e = InitialState(I); s, and s =

s1; s2; s3 with p1, p2 the start and end positions of s2 in s. Given a strand P executed by

participant X̃ , we denote by TP the set of traces in T for which there exists a substitution σ ′

which extends σ to variables in P such that σ ′(P) = λ(s2 |X̃). The complement of this set is

denoted by T¬P and contains all traces which do not have any occurrence of the strand P .

We define the set of traces Pre(TP) = {t[s ← s1, K ← K≤p1
, σ ← σ′] | t ∈ TP}, where

K≤p is the restriction of the knowledge tape K to messages written before the position p.

We define the set of traces Post(TP) = {t[s← s1; s2, K ← K≤p2
, σ ← σ′] | t ∈ TP}.

5.6 Computational Semantics

The semantics of a formula ϕ on a set T of computational traces is a subset T ′ ⊆ T that

respects ϕ in some specific way. For many predicates and connectives, the semantics is

essentially straightforward. For example, an action predicate such as Send selects a set of

84 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

traces in which a send occurs. However, the semantics of predicates Indist and Possess is

inherently more complex.

Intuitively, an agent possesses the value of an expression (such as another agent’s nonce

or key) if the agent can compute this value from information it has seen, with high proba-

bility. If an agent is honest, and therefore follows the rules of the protocol, then it suffices

to use a simple, symbolic algorithm for computing values from information seen in the

run of a protocol. For dishonest agents, we would prefer in principle to allow any proba-

bilistic polynomial-time algorithm. However, quantifying over such algorithms, in a way

that respects the difference between positive and negative occurrences of the predicate in

a formula, appears to introduce some technical complications. Therefore, in the interest

of outlining a relatively simple form of computational semantics, we will use a fixed algo-

rithm. This gives a useful semantics for formulas where Possess(X̃, u) is used under the

hypothesis that X̂ is honest. We leave adequate treatment of the general case for future

work.

Intuitively, an agent has partial information about the value of some expression if the

agent can distinguish that value, when presented, from a random value generated accord-

ing to the same distribution. More specifically, an agent has partial information about a

nonce u if, when presented with two bitstrings of the appropriate length, one the value of u

and the other chosen randomly, the agent has a good chance of telling which is which. As

with Possess, there are technical issues associated with positive and negative occurrences

of the predicate. For positive occurrences of Indist, we should say that no probabilistic

polynomial-time algorithm has more than a negligible chance, where as for ¬Indist(. . .)

we want to say that there exists a probabilistic polynomial-time distinguisher. In order to

present a reasonably understandable semantics, and establish a useful basis for further ex-

ploration of computational semantics of symbolic security logics, we give an interpretation

that appears accurate for formulas that have only positive occurrences of Indist and could

be somewhat anomalous for formulas that contain negative occurrences. This seems ad-

equate for reasoning about many secrecy properties, since these are expressed by saying

that at the end of any run of the protocol, a value used in the run is indistinguishable from

random.

5.6. COMPUTATIONAL SEMANTICS 85

Conditional implication θ ⇒ ϕ is interpreted using the negation of θ and the condi-

tional probability of ϕ given θ. This non-classical interpretation of implication seems to

be essential for relating provable formulas to cryptographic-style reductions involving con-

ditional probabilities. In particular, the soundness proof for the “source” axiom S1, uses

the conditional aspect of this implication in a fundamental way. On the other hand, ⇒

coincides with ⊃ in formulas where Indist does not appear on the right hand size of the

implication.

We inductively define the semantics |[ϕ]| (T,D, ε) of a formula ϕ on the set T of traces,

with distinguisherD and tolerance ε. The distinguisher and tolerance are not used in any of

the clauses except for Indist, where they are used to determine whether the distinguisher has

more than a negligible chance of distinguishing the given value from a random value. In

definition 5.6.1 below, the tolerance is set to a negligible function of the security parameter

and T = TQ(A, η) is the set of traces of a protocol Q with adversary A.

•
∣

∣

∣

[

Send(X̃, u)
]
∣

∣

∣
(T,D, ε) is the collection of all 〈e, λ, O,K,R,RT , σ〉 ∈ T such that

some action in the symbolic execution strand e has the form send Ỹ , v with λ(Ỹ) =

σ(X̃) and λ(v) = σ(u). Recall that σ maps formula variables to bitstrings and

represents the environment in which the formula is evaluated.

• |[a(· , ·)]| (T,D, ε) for other action predicates a is similar to Send(X̃, u).

•
∣

∣

∣

[

Honest(X̂)
]
∣

∣

∣
(T,D, ε) is the collection of all 〈e, λ, O,K,R,RT , σ〉 ∈ T where

e = InitialState(I); s and σ(X) is designated honest in the initial configuration I.

Since we are only dealing with static corruptions, the resulting set is either the whole

set T or the empty set φ depending on whether a principal is honest or not.

•
∣

∣

∣

[

Start(X̃)
]
∣

∣

∣
(T,D, ε) includes all traces 〈e, λ, O,K,R,RT , σ〉 ∈ T where e =

InitialState(I); s and λ(s)|σ(X̃) = ε. Intuitively, this set contains traces in which X̃

has executed no actions.

• |[Contains(u, v)]| (T,D, ε) includes all traces 〈e, λ, O,K,R,RT , σ〉 ∈ T such that

there exists a series of decryptions with {λ(k) | k ∈ Key} and projections (π1,π2)

constructing σ(v) from σ(u). This definition guarantees that the result is the whole

set T if v is a symbolic subterm of u.

86 CHAPTER 5. COMPLEXITY-THEORETIC FOUNDATIONS FOR PCL

• |[ContainsOut(u, v, t)]| (T,D, ε) includes all traces 〈e, λ, O,K,R,RT , σ〉 ∈ T such

that there exists a series of projections (π1,π2) and decryptions with {λ(k) | k ∈ Key},

where σ(t) is never decomposed, creating σ(v) from σ(u). This definition ensures

that the result is the whole set T if v is a symbolic subterm of u but is not a subterm

of t.

• |[θ ∧ ϕ]| (T,D, ε) = |[θ]| (T,D, ε) ∩ |[ϕ]| (T,D, ε).

• |[θ ∨ ϕ]| (T,D, ε) = |[θ]| (T,D, ε) ∪ |[ϕ]| (T,D, ε).

• |[¬ϕ]| (T,D, ε) = T \ |[ϕ]| (T,D, ε) .

• |[∃x. ϕ]| (T,D, ε) =
⋃

β(|[ϕ]| (T [x← β], D, ε)[x← σ(x)])

with T [x ← β] = {t[σ[x ← β]] | t = 〈e, λ, O,K,R,RT , σ〉 ∈ T}, and β any

bitstring of polynomial size.

• |[θ ⇒ ϕ]| (T,D, ε) = |[¬θ]| (T,D, ε) ∪ |[ϕ]| (T ′, D, ε), where T ′ = |[θ]| (T,D, ε).

Note that the semantics of ϕ is taken over the set T ′ given by the semantics of θ, as

discussed earlier in this section.

• |[u = v]| (T,D, ε) includes all traces 〈e, λ, O,K,R,RT , σ〉 ∈ T such that σ(u) =

σ(v).

•
∣

∣

∣

[

DecryptsHonest(Ỹ , {u}rX)
]
∣

∣

∣
(T,D, ε) = |[ϕ]| (T,D, ε) with ϕ = Honest(X̂) ∧

∃v. v := dec Ỹ , {u}rX .

•
∣

∣

∣

[

Source(Ỹ , u, {m}rX)
]
∣

∣

∣
(T,D, ε) = |[∃v.∀w. ϕ]| (T,D, ε) with :

ϕ = New(Ỹ , u) ∧ Contains(m, u)

∧ Contains(v, {m}rX) ∧ Send(Ỹ , v)

∧ ¬ContainsOut(v, u, {m}rX)

∧ (v 6= w ∧ Contains(w, u))⇒ ¬Send(Ỹ , w)

•
∣

∣

∣

[

Possess(X̃, u)
]
∣

∣

∣
(T,D, ε) includes all traces t = 〈e, λ, O,K,R,RT , σ〉 ∈ T such

that σ(u) can be built from V iewt(σ(X̃)) with the Dolev-Yao deduction rules.

5.6. COMPUTATIONAL SEMANTICS 87

•
∣

∣

∣

[

Indist(X̃, u)
]
∣

∣

∣
(T, ε,D) = T if

|{D(V iewt(σ(X̃)), u, LR(σ(u), f(u, σ, r), b), RD, η) = b | t ∈ T}|

|T |
≤

1

2
+ ε

and the empty set φ otherwise. Here, the random sequence b; r;RD = RT , the testing

randomness for the trace t.

• |[θ[P]X̃ϕ]| (T,D, ε) = T¬P ∪ |[¬θ]| (Pre(TP), D, ε) ∪ |[ϕ]| (Post(TP), D, ε) with

T¬P , Pre(TP), and Post(TP) as given by Definition 5.5.6.

Definition 5.6.1. A protocol Q satisfies a formula ϕ, written Q |= ϕ, if ∀A providing an

active protocol adversary, ∀D providing a probabilistic-polynomial-time distinguisher, ∀ν

giving a negligible function, ∃N, ∀η ≥ N ,

| |[ϕ]| (T,D, ν(η)) | / |T | ≥ 1− ν(η)

where |[ϕ]| (T,D, ν(η)) is the subset of T given by the semantics of ϕ and T = TQ(A, η)

is the set of computational traces of protocol Q generated using adversary A and security

parameter η, according to Definition 5.5.1.

Theorem 5.6.2. (Soundness) ∀Q, ∀ϕ, Q ` ϕ ⇒ Q |= ϕ

The soundness proof for an axiom involves demonstrating that the subset obtained by

applying the semantics of the axiom to the set of computational traces nearly covers the

whole set (following Definition 5.6.1). The soundness of the axioms and rules are proved

using various cryptographic proof techniques. For example, AN2 is proved sound using

an information-theoretic argument, while the soundness of S1 is proved by reduction to the

security of the underlying IND-CCA2 secure encryption scheme.

Chapter 6

Unifying Compositional Protocol

Security Definitions

The results presented in this chapter fall within the twin unifying themes of this dissertation—

compositional reasoning and complexity-theoretic foundations in the context of security

analysis of network protocols. However, the security notions studied here and the frame-

work used to investigate their relation to each other is different from the one presented so

far.

One appealing and relatively natural way to specify security properties is through simu-

lation or equivalence. Focusing on protocols and equivalence, we can say what protocol P

should achieve by giving an ideal functionality Q and saying that P be equivalent to Q in

the face of attack. For example, P may be a key exchange protocol that operates over a pub-

lic network, and Q an idealized protocol that uses some assumed form of private channel

to generate and distribute shared keys. If no adversary can make P behave differently from

Q, then since Q is impervious to attack by construction, we are assured that P cannot be

successfully attacked. While this intuitive approach may seem clear enough, more precise

formulations involve a number of details. For example, we may want to use one form of

“ideal key exchange” with few messages to study several competing protocols. This ideal

key exchange protocol is distinguishable from key exchange protocols that use different

numbers of messages, but we can construct a simulator that uses the ideal key exchange

primitive to produce additional messages. Thus a natural variation is not to expect P to be

88

89

equivalent to Q, but ask that P be equivalent to some extension of Q that simulates P and

retains the functionality of Q. Another issue is that we want users of the protocol to have

the same positive outcome under all use scenarios.

The main advantage of specification by simulation or equivalence is composability: if

protocol P is indistinguishable from ideal behavior Q, and protocol R is similarly indis-

tinguishable from S, then P composed with R is indistinguishable from Q composed with

S. Since many forms of security do not compose, the importance of composability should

not be underestimated. Another advantage is generality: simulation and equivalence are

meaningful when the protocol and the adversary operate in probabilistic polynomial time,

and meaningful with nondeterministic computation and idealized cryptography.

We examine three similar specification approaches, and compare the methods over any

computational framework satisfying familiar properties of process calculus. In this setting,

we prove a very general correspondence: universal composability, black-box simulatability,

and process equivalence express the same properties of a protocol, assuming asynchronous

communication. Since our proofs hold for any process calculus that satisfies certain equa-

tional principles, our results are robust and not dependent on specialized properties of any

specific computational setting. However, our results do not immediately apply to Turing

machine models [26, 27, 28, 29, 30] or IO Automata models [114, 12] unless the assumed

structural properties can be established for these models. If synchronous communication is

available, one part of the equivalence becomes weaker because synchronous communica-

tion allows processes to detect an intermediate process acting as a buffer.

Although our results may be most useful to researchers concerned with one of the three

methods, some high-level points may be understood more broadly. First, rather than finding

technical differences between competing approaches, we find that three approaches based

on essentially similar intuition are in fact technically equivalent. Someone beginning to

study this literature can therefore start with any of the approaches. Second, results proved

about one form of specification may be transferred to other forms, simplifying the likely

future development of this topic. Third, we believe that the equivalence of three different

technical definitions, and the fact that this equivalence holds for a broad range of compu-

tational models, strongly suggests that there is a robust, fundamental notion underlying the

three definitions.

90CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

Universal composability [26, 27, 28, 30, 29] involves a protocol to be evaluated, an ideal

functionality, two adversaries, and an environment. The protocol has the ideal functionality

if, for every attack on the protocol, there exists an attack on the ideal functionality, such

that the observable behavior of the protocol under attack is the same as the observable

behavior of the idealized functionality under attack. Each set of observations is performed

by the same environment. Black-box simulatability [114, 34, 12] is a formally stronger

notion in which the two attacks must be related in a uniform way. Black-box simulatability

involves a protocol to be evaluated, an ideal functionality, a simulator, one adversary, and

an environment. The protocol has the ideal functionality if there exists a simulator such

that the protocol and simulation are indistinguishable by any user environment in the face

of any network adversary. The difference between universal composability and black-box

simulatability is that in the first case, for every attack on the protocol, there must be an

attack on the ideal functionality. In the second case, the same is true, but the second attack

must be the same as the first attack, interacting with the the ideal functionality through a

fixed simulator. An essential difference between the adversary and the environment is that

the adversary only has access to network communication, while the environment interacts

with the system through input/output connections that are not accessible to the adversary.

While the first two methods were developed using sets of communicating Turing ma-

chines and probabilistic I/O automata, the third method was developed using process cal-

culus. In the third method, associated with spi-calculus [5, 6], applied π-calculus [3], and

a probabilistic polynomial-time process calculus [101, 76, 103, 115], a protocol P satisfies

specification Q if P is observationally equivalent to Q. The specification Q may be the

result of combining some ideal process and a simulator. Observational equivalence is a

standard notion from the study of programming languages and concurrency theory [95].

Process P is observationally equivalent to Q, written P ∼= Q if, for every context C[]

consisting of a process with a place to insert P or Q, the observable behavior of C[P]

is the same as C[Q]. The reason observational equivalence is relevant to security is that

we can think of the context as an attack. Then P ∼= Q means that any attack on P must

succeed equally well on Q, and conversely. In [101, 76, 103, 115], an asymptotic form

of process equivalence is used, making observational equivalence the same as asymptotic

indistinguishability under probabilistic polynomial-time attack.

6.1. PROCESS CALCULUS 91

Our main results are that with synchronous communication, process equivalence im-

plies black box simulatability, and black box simulatability is equivalent to universal com-

posability. With asynchronous communication, all three notions are equivalent. These

results are demonstrated using formal proofs based on standard process calculus properties

such as associativity of parallel composition, commutativity, renaming of private channels,

scope extrusion, and congruence, together with a few facts about processes that buffer or

forward messages from one channel to another. Since our proofs are based on relatively

simple axioms, the proofs carry over to any process calculus that satisfies these reasonable

and well-accepted equational principles. Although the likely equivalence between univer-

sal composability and black-box simulatability has been mentioned in other work [26], we

believe this is the first general proof of a precise relationship; an independent proof of

the equivalence of black-box simulatability and universal composability is presented for a

specific model (I/O automata) in [14]. Previous work on universal composability and black-

box simulatability is not situated in process calculus, making the kind of general result we

present here, and comparison with process equivalence methods, difficult. In subsequent

work [42], we extend our analysis to include communicating Turing machines (as in [26]

and other work on universal composability) and I/O automata (as in [114, 12] and related

work).

6.1 Process Calculus

Process calculus is a standard language for studying concurrency [95, 124] that has proved

useful for reasoning about security protocols [6, 116]. Two main organizing ideas in pro-

cess calculus are actions and channels. Actions occur on channels and are used to model

communication flows. Channels provide an abstraction of the communication medium. In

practice, channels might represent the communication network in a distributed system envi-

ronment or the shared memory in a parallel processor. In this section, we describe a family

of process calculi by giving a sample syntax and a set of equational principles. Two ex-

ample calculi that satisfy our equational assumptions, spi-calculus [6] and the probabilistic

polynomial-time process calculus of [116], are discussed in Section 6.5.

A process calculus provides a syntax and an associated semantics. For concreteness, we

92CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

will use the syntax defined by the following grammar, although additions to the language

or changes in syntactic presentation are not likely to affect our results.

P ::= 0 (termination)

νc(P) (private channel)

in [c, x] .(P) (input)

out [c, T] .(P) (output)

[T1 = T2].(P) (match)

(P | P) (parallel composition)

!f(x).
(

P
)

(bounded replication)

Intuitively 0 is the empty process taking no action. An input operator in [c, x] .P waits

until it receives a value on the channel c and then substitutes that value for the free variable

x in P. Similarly, an output out [c, T] .P evaluates the term T, transmits that value on the

channel c, and then proceeds with P. Channel names that appear in an input or an output

operation can be either public or private, with a channel being private if it is bound by a

ν-operator and public otherwise. For convenience, we always α-rename channel names

so that they are all distinct. The match operator [T1 = T2] executes the process following

iff T1 have the T2 value. The bounded replication operator has bound determined by the

function f affixed as a subscript. The expression !f(x).
(

P
)

is expanded to the f(x)-fold

parallel composition P | · · · | P before evaluation.

Since an output process out [c, T] .(P) only proceeds when another process is ready

to receive its input, this process calculus has synchronous communication. For maximal

generality, we proceed using a synchronous calculus, constructing asynchronous channels

when desired by inserting buffer processes. In an asynchronous setting, inserting an addi-

tional buffer on a channel would presumably have no effect, and our results would therefore

remain valid.

6.1.1 Equational Principles

A process calculus syntax and semantics give rise to an equivalence relation ∼= called ob-

servational equivalence. Informally, two process calculus expressions are observationally

6.1. PROCESS CALCULUS 93

equivalent if they produce the same observations, when executed in any context. Tradition-

ally, observations are actions on public channels, with actions on a channel c bound by νc()

private and unobservable.

We will assume the standard equational principles collected in Table 6.1. Rules TRN ,

SYM , and CONG state that observational equivalence is a congruence. Rule RENAME

renames bound channels and SCOPE allows us to “extrude” the scope of a private chan-

nel. Intuitively, with channels alpha-renamed apart, we can enlarge the scope of a channel

binding without changing the observable behavior of the process. Rule ZERO says that

the zero process produces no observable activity. Rules COM and ASC reflect the asso-

ciativity and commutativity of parallel composition.

P | Q ∼= Q | P (COM)

(P | Q) | R ∼= P | (Q | R) (ASC)

0 | P ∼= P (ZERO)

σ(c) = σ(d)

νc(P) ∼= νd(P
[d/c])

(RENAME)

c 6∈ Channels(C[0])

νc(C[P]) ∼= C[νc(P)]
(SCOPE)

P ∼= Q,Q ∼= R

P ∼= R
(TRN)

P ∼= Q

Q ∼= P
(SYM)

P ∼= Q

∀C[] ∈ Con : C[P] ∼= C[Q]
(CONG)

Table 6.1: Equivalence Principles

For reasons that will become clear in later sections of the chapter, we partition the

set of public channel names into two infinite sets: the network channels and the input-

output channels. We use the abbreviation net to refer to network channels and io for input-

output channels. The difference between these two sets is that network channels will carry

communication accessible to the adversary, while io channels allow users (the environment)

to provide inputs to and observe the outputs produced by the protocol. We use νnet to

94CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

indicate binding νn1, . . . , νnk of all network channels in a process, and similarly νio for

binding all io channels.

Throughout the chapter, we use P, F, A, and S (with superscripts if necessary) for

processes that represent a real protocol, an ideal functionality, an adversary and a simulator.

These may be arbitrary processes, except that we impose restrictions on the names of public

channels that each may contain. Specifically, all public channel names in a protocol P, an

ideal functionality F, and an adversaryA must be network or input-output channels, while

all public channel names in a simulator S must be network channels. For any given protocol

P, the io channels of an adversary A attacking P must be disjoint from the io channels of

P. The purpose of these restrictions is to allow the adversary, for example, to connect to the

network channels of a protocol or ideal functionality, but not to its input-output channels.

Also, by making all network channels private when a protocol P is combined with an

adversary A, we ensure that only the io channels are accessible to the environment.

6.1.2 Buffers, dummy adversaries, and asynchronous communication

One of the main differences between process equivalence and the two other relations is that

process equivalence only involves one form of context (surrounding processes interacting

with the protocol), as opposed to separate adversary and environment contexts in the other

two relations. Therefore, while investigating the connection between process equivalence

and the other relations, we will replace the adversary in the other definitions by a “dummy

adversary” that does nothing but pass messages to the surrounding context. Also, since the

underlying process calculus is assumed to be synchronous, we interpose “buffers” between

processes to enforce asynchronous communication when desired. Consequently, our proofs

require certain equational properties of buffers and simple processes that forward messages

from one channel to another.

For any pair a and b of disjoint lists of channel names, both of the same length, we

assume two processes Db
a and Bb

a, which we will call a dummy adversary and a buffer pro-

cess, respectively. Intuitively, the axioms about Db
a and Bb

a below state that these processes

forward data between channels a1, . . . , ak and b1, . . . , bk, respectively. A dummy adversary

may need to preserve message order to satisfy Axiom 6.1.1, but a buffer need not preserve

6.2. SECURITY DEFINITIONS 95

message order. We assume thatDb
a andBb

a have the channel names a1, . . . , ak and b1, . . . , bk

free, and no other free channel names.

Axiom 6.1.1 (Dummy Adversary (DUMMY)). Let P be a protocol andA be an adver-

sary. Then νnet(P | A) ∼= νnet,dummy(P | D
dummy
net | A[dummy/net]) where dummy is a set

of fresh channels of cardinality |net| used to communicate between the dummy adversary

and the modified adversary.

Axiom 6.1.2 (Double Buffering (DBLBUF)). Let Bb
a, Bc

b and Bc
a be three buffers, for

disjoint lists of channel names a, b, c of the same length. Then, νb(B
b
a | B

c
b)
∼= Bc

a.

Axiom 6.1.3 (Dummy and Buffer (DUMBUF)). Let Bb
a, Bc

b and Bc
a be three buffers and

let Dc
b and Db

a be dummy adversaries, for disjoint lists of channel names a, b, c of the same

length. Then, νb(B
b
a | D

c
b)
∼= Bc

a and νb(D
b
a | B

c
b)
∼= Bc

a

Intuitively, Axiom 6.1.1 states that the interaction between a protocol and adversary

through the network is indistinguishable from a situation when the communication between

the protocol and the adversary is routed through the dummy adversary. Axiom 6.1.2 states

that two buffers placed on a channel are indistinguishable from one buffer on that channel

and Axiom 6.1.3 states that placing a dummy adversary and a buffer in sequence on a

channel is equivalent to just having a buffer on that channel. Specific buffer and dummy

adversary processes are presented in Section 6.5.

6.2 Security Definitions

In this section, we define three relations on processes, universal composability, black-box

simulatability and process equivalence. These definitions are first presented in the syn-

chronous form, then modified at the end of the section to assume asynchronous communi-

cation by placing buffers between process, adversary, and environment.

Definition 6.2.1. Universal Composability: A protocolP is said to securely realize an ideal

functionality F if for any adversary A attacking the protocol, there exists an adversary

A∗ attacking the ideal functionality, such that no context can distinguish whether it is

interacting with P and A or with F andA∗ . Formally,

96CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

∀A. ∃A∗. νnet(P | A) ∼= νnet(F | A
∗)

Figure 6.1 provides further intuition. The protocol as well as the ideal functionality

communicate with the respective adversary processes over the network channels (denoted

net in the figure). These channels are not visible to the context (or “environment” to use the

terminology of [26, 114]). However, the context gets to communicate with these processes

over the input-output channels (denoted io in the figure). All other channels of P, A, F,

and A∗ are private. The intuition behind the distinction between channels is that if you are

a user of SSL (Secure Sockets Layer), for example, your browser communicates with the

implementation of SSL through io channels, while an attacker on the network has control

of traffic on net channels.

Since the two process expressions in the definition of Universal Composability are ob-

servationally equivalent, this implies that if there is an attack on the real protocol, then

there exists an equivalent attack on the ideal functionality. Hence, if the ideal functionality

is impervious to attack by construction, then a real protocol that satisfies the above defini-

tion wrt the ideal functionality also cannot be attacked. While [26, 27, 28, 30, 29] discuss

an adversary and environment, the environment here is provided by the context used in the

definition of ∼=.

P A
net

io io io io

net
F A*

=

Figure 6.1: Universal Composability

In the definition of black-box simulatability and process equivalence, we use a simulator

process whose public channels correspond to the union of the network channels of the ideal

functionality (denoted sim below) and the network channels of the adversary (denoted net

below).

6.2. SECURITY DEFINITIONS 97

Definition 6.2.2. Black-box Simulatability: A protocolP is said to securely realize an ideal

functionality F if there exists a simulator S such that for any adversary A, no context can

distinguish whether it is interacting with P andA or with F, S andA. Formally,

∃S. ∀A. νnet(P | A) ∼= νnet(νsim(F | S) | A)

Figure 6.2 depicts this scenario. In effect, the simulator S uses the ideal functionality

F to simulate the real protocol P. The difference between universal composability and

black-box simulatability is that in the first case, for every attack on the protocol, there must

be an attack on the ideal functionality. In the second case, the same is true, but the second

attack must be the same as the first attack, carried out on a simulation of the protocol that

may rely on the ideal functionality.

P A F S A
=

net sim net

io io io io

Figure 6.2: Black Box Simulatability

Definition 6.2.3. Process Equivalence: A protocol P is said to securely realize an ideal

functionality F if there exists a simulator S such that no context can distinguish whether it

is interacting with P or with F and S. Formally,

∃S. P ∼= νsim(F | S)

Figure 6.3 depicts this situation. Note that, unlike the first two definitions, the context

has access to both the network and the input-output channels. Intuitively, the context used

in the definition of observational equivalence serves the roles of both the adversary and the

environment.

98CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

P

io n

F S
sim=

io n

Figure 6.3: Process Equivalence

For each of these three relations, we formulate below corresponding asynchronous con-

ditions by interposing message buffers or “bags” [95] on the network, input-output, and

simulation channels. A buffer is any process satisfying the syntactic restrictions and ax-

ioms described in Section 6.1.2.

UC : ∀A. ∃A∗. νph,pn,an,ah(B
h
ph | P | B

an
pn | A | B

h′

ah)
∼=

νfh,fn,sn,sh(B
h
fh | F | B

sn
fn | A

∗ | Bh′

sh)

BB : ∃S. ∀A νph,pn,h′,ah′(Bh
ph | P | B

h′

pn | A | B
h′′

ah′) ∼=

νfh,fn,sn,sh,h′,ah′(Bh
fh | F | B

sn
fn | S | B

h′

sh | A | B
h′′

ah′)

PE : ∃S. νph,pn(B
h
ph | P | B

n
pn) ∼= νfh,fn,sh,sn(B

h
fh | F | B

sh
fn | S | B

n
sn)

The binding of channels used in these definitions should be intuitively clear. In the UC

condition, for example, Bh
ph buffers messages on P ′s input-output channels; it forwards

messages on the channels labelled h to P ′s input-output channels (denoted ph). By binding

the channels ph, we ensure that they are not observable by the environmental context.

Similarly, Ban
pn and Bh′

ah buffer messages on the network channels between P andA and the

io channels ofA.

6.3. BLACK-BOX SIMULATABILITY AND UNIVERSAL COMPOSABILITY 99

BB ∃S. ∀A. νnet(P | A) ∼= νnet(νsim(F | S) | A) (6.1)

(1),SCOPE,ASC ∃S. ∀A. νnet(P | A) ∼= νsim(F | νnet(S | A)) (6.2)

(2),RENAME ∃S. ∀A. νnet(P | A) ∼= νnet(F
R | νsim(SR | AR)) (6.3)

(3) ∀A. ∃A∗. νnet(P | A) ∼= νnet(F
R | A∗) (6.4)

Table 6.2: Black-Box Simulatability implies Universal Composability (Synchronous Com-
munication)

6.3 Black-box Simulatability and Universal Composabil-

ity

In this section, we prove that universal composability and black-box simulatability are

equivalent for both synchronous and asynchronous communication.

Theorem 6.3.1. Universal composability is equivalent to black-box simulatability with syn-

chronous communication.

Proof. ⇐: Follows immediately by scope extrusion (SCOPE), associativity of parallel-

or (ASC) and renaming of private channels (RENAME). The formal proof is given in

Table 6.2. A∗ is simply νsim(SR | AR). Thus, the combination of the simulator and the real

adversary gives us the ideal process adversary demanded by the universal composability

definition.

⇒: The formal proof is in Table 6.3. In Figure 6.4, the same proof is sketched out using

intuitive diagrams of the form introduced in Section 6.2. We use standard process calculus

proof rules: congruence (CONG), associativity of parallel-or (ASC), renaming of private

channels (RENAME), and scope extrusion (SCOPE). The only step in the proof that

does not immediately follow from our general equational principles rules is (4). We use the

network-specific equivalence rule DUMMY (see Axiom 6.1.1) here. This rule captures

the intuition that the environment cannot distinguish whether it is interacting with a process

P and adversary A or it is interacting with P and A where the communication between

them is forwarded through a “dummy adversary”, D, which just forwards messages in the

order in which it receives them. Naturally, a dummy adversary process has to be defined

100CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

UC ∃S. νnet(P | D) ∼= νnet(F | S) (6.1)

(1),CONG ∃S. ∀A. νa′(νnet(P | D | A
R)) ∼= νa′(νnet(F | S) | A

R)(6.2)

(2),SCOPE,ASC ∃S. ∀A. νnet(P | νa′(D | AR)) ∼= νa′(νnet(F | S) | A
R)(6.3)

(3),DUMMY ∃S. ∀A. νnet(P | A) ∼= νa′(νnet(F | S) | A
R) (6.4)

(4),RENAME ∃S. ∀A. νnet(P | A) ∼= νnet(νsim(FR | SR) | A) (6.5)

Table 6.3: Universal Composability implies Black-Box Simulatability (Synchronous Com-
munication)

and the assumed equivalence has to be proven in any concrete calculus in which we wish

to apply our general results.

Theorem 6.3.2. Universal composability is equivalent to black-box simulatability with

asynchronous communication.

Proof. ⇐: Follows immediately by scope extrusion (SCOPE), associativity of parallel-or

(ASC) and renaming of private channels (RENAME). The formal proof is exactly the

same as the one for the synchronous model. A∗ is simply νsn,an(S | B
an
sn | A).

⇒: The formal proof is given in Table 6.4. The standard process calculus rules used in

the proof are congruence (CONG) and scope extrusion (SCOPE). The two non-standard

rules used are (DBLBUF) and (DUMBUF). As for (DUMMY) these rules need to

be proven in any concrete calculus in which we wish to apply our general results.

6.4 Process Equivalence and Black-box Simulatability

Process equivalence and black-box simulatability are equivalent with asynchronous com-

munication. With synchronous communication, however, process equivalence implies black-

box simulatability but not conversely.

Theorem 6.4.1. Process equivalence implies black-box simulatability with synchronous

communication.

6.4. PROCESS EQUIVALENCE AND BLACK-BOX SIMULATABILITY 101

=

=

D

D

D

net net

net net

net net

net
net

net sim

A =

(1)

(2)

(3)

(4)

(5)

=

=

R

F

F

F

S

S

S

S

S
RR

a’ a’

a’

a’

a’

net

F
R

RR

R

A

A A

A

P

P

P

P

P

A

A A

F

Figure 6.4: Universal Composability implies Black Box Simulatability: Proof Sketch

102CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

UC ∃S. νph,pn,an,ah(B
h
ph | P | B

an
pn | D

ah
an | B

h′

ah)
∼=

νfh,fn,sn,sh(B
h
fh | F | B

sn
fn | S | B

h′

sh) (6.1)

(1),CONG ∃S. ∀A νph,pn,an,ah,h′,ah′(Bh
ph | P | B

an
pn | D

ah
an | B

h′

ah | A | B
h′′

ah′)

∼= νfh,fn,sn,sh,h′,ah′(Bh
fh | F | B

sn
fn | S | B

h′

sh | A | B
h′′

ah′) (6.2)

(2),SCOPE,DUMBUF ∃S. ∀A νph,pn,an,h′,ah′(Bh
ph | P | B

an
pn | B

h′

an | A | B
h′′

ah′) ∼=

νfh,fn,sn,sh,h′,ah′(Bh
fh | F | B

sn
fn | S | B

h′

sh | A | B
h′′

ah′) (6.3)

(3),SCOPE,DBLBUF ∃S. ∀A νph,pn,h′,ah′(Bh
ph | P | B

h′

pn | A | B
h′′

ah′) ∼=

νfh,fn,sn,sh,h′,ah′(Bh
fh | F | B

sn
fn | S | B

h′

sh | A | B
h′′

ah′) (6.4)

Table 6.4: Universal Composability implies Black-Box Simulatability (Asynchronous
Communication)

Proof. By definition, we have ∃S. P ∼= νsim(F | S). Hence, by the congruence rule,

CONG, we have that ∃S. ∀A. νnet(P | A) ∼= νnet(νsim(F | S) | A). This is precisely

the definition of black-box simulatability in the synchronous communication.

The reason that process equivalence is strictly stronger than black-box simulatabil-

ity in the synchronous case is that when the the adversary and environment are com-

bined into one surrounding process context, this context may use the global ordering of

events on the net and io channels to distinguish between real and ideal processes. This

global ordering is not available when the adversary and the environment are separate pro-

cesses as in the definition of black-box simulatability. Consider the two processes P ::=

out [io, α] .out [io, γ] .out [net, β] and Q ::= out [io, α] .out [net, β] .out [net, γ].

These two processes satisfy the definition of black-box simulatability in a non-deterministic

process calculus like spi-calculus (using a simulator that just forwards messages to the ad-

versary). However, they do not satisfy the definition of process equivalence since the global

ordering of observables on the io and net channels is α, γ, β in one case and α, β, γ in the

other.

Theorem 6.4.2. Process equivalence is equivalent to black-box simulatability with asyn-

chronous communication.

6.5. APPLICATIONS TO SPECIFIC PROCESS CALCULI 103

BB ∃S. νph,pn,an,ah(B
h
ph | P | B

an
pn | D

ah
an | B

h′

ah)
∼=

νfh,fn,sh,sn,an,ah(B
h
fh | F | B

sh
fn | S | B

an
sn |

Dah
an | B

h′

ah) (6.1)

(1),SCOPE,DUMBUF ∃S. νph,pn,an(B
h
ph | P | B

an
pn | B

h′

an) ∼=

νfh,fn,sh,sn,an(B
h
fh | F | B

sh
fn | S | B

an
sn | B

h′

an) (6.2)

(2),SCOPE,DBLBUF ∃S. νph,pn,an(B
h
ph | P | B

h′

pn) ∼=

νfh,fn,sh,sn,an(B
h
fh | F | B

sh
fn | S | B

h′

sn) (6.3)

Table 6.5: Black-Box Simulatability implies Process Equivalence (Asynchronous Commu-
nication)

Proof. ⇒: By definition, ∃S. νph,pn(B
h
ph | P | B

n
pn) ∼= νfh,fn,sh,sn(B

h
fh | F | B

sh
fn | S |

Bn
sn). Hence, by the congruence rule, CONG, we have ∃S. ∀A. νph,pn,an,ah(B

h
ph | P |

Ban
pn | A | B

h′

ah)
∼= νfh,fn,sh,sn,an,ah(B

h
fh | F | B

sh
fn | S | B

an
sn | A | B

h′

ah). This is precisely

the definition of black-box simulatability when communication is asynchronous. The proof

follows the same line of reasoning as the one for synchronous communication.

⇐: The formal proof is in Table 6.5. Besides scope extrusion, it uses (DBLBUF) and

(DUMBUF) to replace a dummy adversary and buffer process combination as well as

two sequentially connected buffers by a single instance of a buffer process.

6.5 Applications to specific process calculi

In this section, we demonstrate that several standard process calculi used for reasoning

about security protocols (the probabilistic polynomial-time process calculus of [116], the

spi-calculus [6], and the applied π-calculus [3]) satisfy the equational principles used in

the axiomatic proofs in the previous sections. The proved relations between the various

security definitions therefore hold in these calculi.

104CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

6.5.1 Probabilistic Poly-time Process Calculus

A probabilistic polynomial-time process calculus (PPC) for security protocols is developed

in [101, 76, 103]; the best current presentations are [115, 116]. It consists of a set of

terms that do not perform any communications, expressions that can communicate with

other expressions, and, channels that are used for communication. Terms contain variables

that receive values over channels. There is also a special variable n called the security

parameter. Each expression defines a set of processes, one for each choice of value for

the security parameter. Each channel name has a bandwidth polynomial in the security

parameter associated with it by a function called σ. The bandwidth ensures that no message

gets too large and, thus, ensures that the expression can be evaluated in time polynomial in

the security parameter.

The class of terms used must satisfy the following two properties:

1. If θ is a term with k variables, then there exists a probabilistic Turing machine Mθ

with k inputs and a polynomial qθ(x1, . . . , xk) such that:

(a) The term θ, with a1, . . . , ak substituted for its k variables, reduces to a with

probability p if and only if Mθ(a1, . . . , ak) returns a with probability p; and,

(b) For any choice of a1, . . . , ak we have that Mθ(a1, . . . , ak) halts in time at most

qθ(|a1|, . . . , |ak|).

2. For each probabilistic polynomial-time function f : N
m → N, there exists a term θ

such that Mθ computes f .

Essentially, the term language completely captures the class of probabilistic polynomial-

time Turing machines. One example of such a set of terms is based on a term calculus

called OSLR studied in [101] (based in turn on [17, 65]).

Although any probabilistic polynomial-time function can be computed by a term, com-

munication requires additional syntactic forms. Expressions of PPC are given by the gram-

mar in Section 6.1. The contexts, Con, of PPC are obtained from the grammar by adding a

placeholder symbol for a “hole” to be filled in, as usual.

6.5. APPLICATIONS TO SPECIFIC PROCESS CALCULI 105

Operational Semantics

The evaluation of a variable-closed process proceeds in three steps: reduction, selection,

and communication. In the reduction step, all terms and matches that are not in the scope of

an input expression are evaluated. Since the expression is variable-closed and only inputs

can bind variables, we know that every term outside the scope of an input has no free

variables. This step simulates computation.

In the selection step, we use a probabilistic scheduler to select an action to perform.

Actions include the silent action, τ ; the input action in〈c, a〉 that reads the value a from

the channel c into the variable x; the output action out〈c, a〉 that places the value a on the

channel c; and the simultaneous action α · β where one of α and β is an input action from

the channel c of the value a and the other action is an output of the value a on the channel

c obtained by using the action product · on α and β. We will say that two actions are of the

same type if they are both inputs, outputs, or simultaneous actions with the same channel

and value. The scheduler picks a particular type of simultaneous action from the set of

available simultaneous action types according to the distribution defining the scheduler.

However, silent actions must be performed if they are available since silent actions have

higher priority. Then, one action of that type is picked uniformly at random from the set of

available actions of that type. Further discussion may be found in [115].

In the communication step, we perform the indicated substitution taking care to truncate

the value according to the bandwidth associated with the channel name. This is important

for preserving the polynomial-time property of the process calculus.

We call this three-stage procedure an evaluation step; and evaluation proceeds in evalu-

ation steps until the set of schedulable actions becomes empty. We refer the reader to [115]

for more details.

Theorem 6.5.1. Let P be a process. Then the evaluation of P can be performed in time

polynomial in the security parameter.

The proof proceeds by constructing a machine that evaluatesP. The time-bound follows

from the representation of terms and schedulers as probabilistic polynomial-time Turing

machines.

106CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

A form of weak probabilistic bisimulation over asymptotically polynomial-time pro-

cesses, or more simply probabilistic bisimulation, is developed in [115, 116] (see also

[124]). Two processes P and Q are probabilistically bisimilar just when

1. If P can take an action α and with probability p become P ′, then Q must be able to

take α to become processes Q1, . . . , Qk with total probability p; and,

2. If Q can take an action α and with probability p become Q′ , then P must be able to

take α to become processes P1, . . . , Pk with total probability p.

Using ' to denote the bisimulation equivalence relation, [115, 116] show that ' is a con-

gruence.

Theorem 6.5.2. ∀P,Q ∈ Proc.∀C[] ∈ Con : P ' Q =⇒ C[P] ' C[Q]

Definition 6.5.3. Let P and Q be two PPC expressions. Then P ∼= Q if, for sufficiently

large n, P n←n is observationally indistinguishable from Qn←n.

A more precise definition can be found in [115, 116]. We also have the following theo-

rem, proved in [115], which states that if two processes are probabilistically bisimilar, then

they are observationally equivalent (in the sense of [115]). Hence, to prove observational

equivalence, it is sufficient to demonstrate a probabilistic bisimulation.

Theorem 6.5.4. P ' Q =⇒ P ∼= Q.

In [115], it is proved that all the equational principles of Table 6.1 hold in PPC. It

remains to show that (DUMMY), (DBLBUF), and (DUMBUF) hold in PPC. For

simplicity we will construct uni-directional buffers, assuming that each public channel is

directional i.e., a channel name is used in a process only for inputs or only for outputs. We

will say that a channel is an input channel (resp. output channel) just when it is to be used

only for inputs (resp. outputs). Bi-directional buffers may be constructed by composing a

pair of uni-directional channels.

Definition 6.5.5. Let A = {a1, . . . , ak} and B = {b1, . . . , bk} be two equinumerous sets of

channel names such that ai ∈ A is an input channel iff bi ∈ B is an output channel. We

define Bbi

ai
as

!q(·).
(

in [ai, y] .out [bi, y]
)

6.5. APPLICATIONS TO SPECIFIC PROCESS CALCULI 107

in the case that ai is an output channel, and

!q(·).
(

in [bi, y] .out [ai, y]
)

in the case that ai is an input channel. Then we define the asynchronous buffer between A

and B, BB
A , as the expression Bb1

a1
| · · · | Bbk

ak
.

Essentially, an asynchronous buffer forwards messages between channels in A and

channels in B without preserving any message-ordering since, for example, it is possi-

ble that an input on ai is read, then a second input on ai is read and forwarded onto bi

before the first input on ai is forwarded onto bi.

Definition 6.5.6. Let A = {a1, . . . , ak} and B = {b1, . . . , bk} be two equinumerous sets of

channel names such that ai ∈ A is an input channel iff bi ∈ B is an output channel. We

define Dbi

ai
as

in [ai, y] .out [bi, y] .out [syni, 1] | !q(·).
(

in [syni, x] .in [ai, y] .out [bi, y] .out [syni, 1]
)

in the case that ai is an output channel, and

in [bi, y] .out [ai, y] .out [syni, 1] | !q(·).
(

in [syni, x] .in [bi, y] .out [ai, y] .out [syni, 1]
)

in the case that ai is an input channel. Then we define the dummy adversary between A

and B, DB
A , as the expression

νsyn(Dbi

a1
| · · · | Dbk

ak
)

The expression DB
A simply forwards communications between each channel ai ∈ A

and bi ∈ B. The channel syni is used to synchronize between the various inputs and

outputs on the channel ai in DB
A to avoid situations where, for example, a value has been

read on the channel bi and, before it is forwarded, a new value is read on the channel bi

and then forwarded. Essentially, the use of syni allows us to preserve the ordering on

communications on ai by guaranteeing that if DB
A receives the message o before o′, it will

transmit o before o′. Thus a dummy adversary is just a message-order-preserving buffer.

108CHAPTER 6. UNIFYING COMPOSITIONAL PROTOCOL SECURITY DEFINITIONS

Theorem 6.5.7. The equivalence principles (DUMMY), (DBLBUF), and (DUMBUF)

hold in PPC.

We prove these equivalences by constructing a probabilistic bisimulation and then ap-

plying Theorem 6.5.4.

6.5.2 Spi-Calculus and Applied π-Calculus

Spi-calculus [6] and applied π-calculus [3] are two other process calculi that have been used

to reason about security protocols. All the standard structural equivalence rules: associa-

tivity of parallel composition (ASC), renaming of private channels (RENAME), scope

extrusion (SCOPE), congruence (CONG), which were collected in Table 6.1, hold in

these calculi. The network-specific equivalences are also satisfied with appropriate defini-

tions of dummy adversary and buffer processes. Hence the results proved in Section 6.3

and Section 6.4 also hold for these calculi. A representative proof for spi-calculus is given

below.

Theorem 6.5.8. Theorem 6.3.1 and Theorem 6.4.1 hold for spi-calculus.

Proof. The standard equivalence rules used in proving the two theorems: associativity of

parallel-or (ASC), renaming of private channels (RENAME), congruence (CONG),

and scope extrusion (SCOPE) hold in spi-calculus. The only non-standard step corre-

sponds to DUMMY. The proof relies on the observation that the situation in which

processes P andA communicate over a private channel is observationally equivalent to the

one in which all such communication is routed through a dummy process that just forwards

messages in both directions. For simplicity, we consider only the case when there are two

channels c0 and c1 between P and A. Since channels are directional, without loss of gen-

erality, we assume that channel c0 is from A to P (i.e., only A outputs messages on c0, and

only P receives messages on c0), and channel c1 is from P to A. The proof extends directly

to the multiple-channel case.

Rewriting the statement using spi-calculus formalism and letting Ad stand for A[d/c],

we wish to demonstrate that

(νc0, c1)(P | A) ' (νc0, c1, d0, d1)(P | ((νs0, s1)(D0 | D1) | A
d))

6.5. APPLICATIONS TO SPECIFIC PROCESS CALCULI 109

where
D0 = d0(y).c0〈y〉.s0〈1〉 | ! s0(x).d0(y).c0〈y〉.s0〈1〉

D1 = d1(y).c1〈y〉.s1〈1〉 | ! s1(x).d1(y).c1〈y〉.s1〈1〉

We outline the proof in the following direction:

(νc0, c1)(P | A) v (νc0, c1, d0, d1)(P | ((νs0, s1)(D0 |D1) | A
d)).

The proof in the other direction is similar. For our purposes, it is sufficient to recall that,

informally, P passes a test (R, β) if P produces an observable on a channel named β when

run in parallel with R. By definition, P1 v P2 if, for any test (R, β) passed by P1, P2 also

passes the test.

Let (R, β) be some test passed by (νc)(P | A). By Proposition 4 [6], this implies that

there exist an agent A and a process Q such that (νc0, c1)(P | A)|R
τ
→
∗
Q and Q

β
→ A.

Since we assume that P and A communicate only via channels c0 and c1, every reac-

tion of P | A is a reaction of P , a reaction of A, or an interaction between P and A.

In the latter case, because we assumed that channels are directional, P = c0(x).P
′, A =

c0〈m〉.A
′, P |A

τ
→ P ′[m/x]|A′, or P = c1〈m〉.P

′, A = c1(x).A
′, P |A

τ
→ P ′|A′[m/x].

To prove the lemma by induction over all reactions of (νc0, c1)(P |A)|R, it is sufficient to

demonstrate that, if P = c0(x).P
′, A = c0〈m〉.A

′, c0(x).P
′|c0〈m〉.A

′ τ
→ P ′[m/x]|A′, then

c0(x).P
′|((νs0, s1)(D0|D1)|d0〈m〉.A

′d)
τ
→ P ′[m/x]|((νs0, s1)(D0|D1)|A

′d). The proof

for the case P = c1〈m〉.P
′, A = c1(x).A

′, c1〈m〉.P
′|c1(x).A

′ τ
→ P ′|A′[m/x] is symmetric.

c0(x).P
′|((νs0, s1)(D0|D1)|d0〈m〉.A

′d) =

c0(x).P
′|((νs0, s1)((d0(y).c0〈y〉.s0〈1〉|! s0(x).d0(y).c0〈y〉.s0〈1〉)|D1)|d0〈m〉.A

′d)
τ
→

c0(x).P
′|((νs0, s1)((c0〈m〉.s0〈1〉|! s0(x).d0(y).c0〈y〉.s0〈1〉)|D1)|A

′d)
τ
→

P ′[m/x]|((νs0, s1)((s0〈1〉|! s0(x).d0(y).c0〈y〉.s0〈1〉)|D1)|A
′d)

τ
→

P ′[m/x]|((νs0, s1)((d0(y).c0〈y〉.s0〈1〉|! s0(x).d0(y).c0〈y〉.s0〈1〉)|D1)|A
′d) =

P ′[m/x]|((νs0, s1)(D0|D1)|A
′d)

Chapter 7

Related Work

In this chapter, we compare our work with related research on similar topics. The main

styles of relevant related work can be grouped into four categories. A comparison is pre-

sented between PCL and two previous approaches for proving security properties of net-

work protocols—a specialized logic called BAN [24], and Paulson’s Inductive Method [110].

We survey research results on systematic methods for protocol design that preceded our

work on PDS. The composition paradigm of PCL is compared and contrasted with other

approaches for reasoning compositionally in security, cryptography and distributed com-

puting. Finally, we summarize other results on symbolic reasoning about the complexity-

theoretic model of cryptographic protocols.

7.1 Proving security properties of network protocols

PCL shares several features with BAN [24], a specialized protocol logic. It is designed to

be a logic for authentication, with relevant secrecy concepts. Both logics annotate programs

with assertions and use formulas for concepts like “freshness”, “sees”, “said”, and “shared

secret”. For example, in PCL the fact that key k is a ”shared secret” between agents X

and Y is represented using the logical formula Has(X, k)∧Has(Y,K)∧∀Z. (Has(Z, k) ⊃

(Z = X ∨ Z = Y)). Furthermore, neither logic requires explicit reasoning about the

actions of an attacker.

On the other hand, PCL differs from BAN on some aspects since it addresses known

110

7.2. SYSTEMATIC DESIGN OF SECURE NETWORK PROTOCOLS 111

problems with BAN. BAN had an abstraction step in going from the program for the pro-

tocol to its representation as a logical formula. PCL avoids the abstraction phase since

formulas contain the program for the protocol. PCL uses a dynamic logic set-up: after a

sequence of actions is executed, some property holds in the resulting state. It is formulated

using standard logical concepts: predicate logic and modal operators, with more or less

standard semantics for many predicates and modalities. Temporal operators can be used to

refer specifically to actions that have happened and the order in which they occurred. For-

mulas are interpreted over traces and the proof system is sound with respect to the standard

symbolic model of protocol execution and attack. On the other hand, BAN was initially

presented without semantics. Although subsequently, model-theoretic semantics was de-

fined, the interpretation and use of concepts like “believes” and “jurisdiction” remained

unclear. Finally, PCL formulas refer to specific states in protocol. For example, x may be

fresh at one step, then no longer fresh. In contrast, BAN statements are persistent making

it less expressive.

PCL also shares several common points with the Inductive Method [110]. Both methods

use the same trace-based model of protocol execution and attack; proofs use induction and

provable protocol properties hold for an unbounded number of sessions. One difference is

the level of abstraction. Paulson reasons explicitly about traces including possible intruder

actions whereas basic reasoning principles are codified in PCL as axioms and proof rules.

Proofs in PCL are significantly shorter and do not require any explicit reasoning about an

intruder. Finally, while Paulson’s proofs are mechanized using Isabelle, most proofs in

PCL are hand-proofs. However, PCL is amenable to automation and a tool implementation

effort is underway.

7.2 Systematic design of secure network protocols

There has been some work on systematizing the practice of constructing security protocols,

starting from simple components and extending them by features and functions. In [23],

Bird and co-authors describe the systematic design of a family of authentication protocols.

A similar approach is taken by Diffie, Van Oorschot and Wiener in their presentation of

the STS protocol in [46]. More recently, Bellare, Canetti and Krawczyk [19] have studied

112 CHAPTER 7. RELATED WORK

two interesting protocol transformations, which they call authenticators, which generically

add authentication to a given protocol scheme. In [113], Perrig and Song present a method

for automatic generation of protocols. Their approach involves searching the entire space

of protocols for one that satisfies the security requirements and is minimal with respect to

some metric (e.g., number of public key operations). A protocol is defined as a sequence

of messages sent between two parties and the message space is specified by a grammar.

Whether a particular protocol satisfies the security requirements is decided by running it

through the automatic protocol analysis tool, Athena [119]. Independently, Clark and Jacob

developed a similar approach for protocol synthesis [32]. They use genetic algorithms to

search the space of protocols expressible in BAN logic [24]. Other works on using formal

logic for protocol design include [9, 25].

7.3 Secure protocol composition

Early work on the protocol composition problem concentrated on designing protocols that

would be guaranteed to compose with any other protocol. This led to rather stringent

constraints on protocols: in essence, they required the fail-stop property [56] or some-

thing very similar to it [61]. Since real-world protocols are not designed in this manner,

these approaches did not have much practical application. More recent work has there-

fore focussed on reducing the amount of work that is required to show that protocols are

composable. Meadows, in her analysis of the IKE protocol suite using the NRL Protocol

Analyzer [90], proved that the different sub-protocols did not interact insecurely with each

other by restricting attention to only those parts of the sub-protocols, which had a chance of

subverting each other’s security goals. Independently, Thayer, Herzog and Guttman used

a similar insight to develop a technique for proving composition results using their strand

space model [123]. Their technique consisted in showing that a set of terms generated by

one protocol can never be accepted by principals executing the other protocol. The tech-

niques used for choosing the set of terms, however, is specific to the protocols in [122]. A

somewhat different approach is used by Lynch [80] to prove that the composition of a sim-

ple shared key communication protocol and the Diffie-Hellman key distribution protocol is

secure. Her model uses I/O automata and the protocols are shown to compose if adversaries

7.3. SECURE PROTOCOL COMPOSITION 113

are only passive eavesdroppers.

In a recent paper [31], Canetti, Meadows and Syverson, revisit the protocol composi-

tion problem. They show how the interaction between a protocol and its environment can

have a major effect on the security properties of the protocol. In particular, they demon-

strate a number of attacks on published and widely used protocols that are not feasible

against the protocol running in isolation but become feasible when they are run in parallel

with certain other protocols. This study further reinforces the importance of methods for

reasoning about the composability of protocols. We believe that the results presented in

this dissertation represent significant progress in this direction. The methods presented in

Section 4.1.1 provide a way to implicitly characterize, using invariants, a class of proto-

cols with which a specific protocol can be safely composed. In particular, our formalism

justifies some of the design principles discussed by the authors. One recommendation is

that the environment should not use keys or other secrets in unaltered form. Specifically,

the protocol under consideration should not encrypt messages with a key used to encrypt

messages by any protocol in its environment. The reason this makes sense is that if two

protocols use a particular form of encrypted message as a test to authenticate a peer, then

the attacker might be able to make a principal running the first protocol accept a message

which actually originated in a run of the second protocol. If this is indeed the case, then in

our formalism, the invariant for the protocol under consideration would fail to hold in such

an environment, and the composition proof would therefore not go through. However, this

seems like an overly conservative design approach since not every two protocols which use

the same encryption keys interfere with each other’s security. The invariant-preservation

method can help identify protocols which can run safely in parallel even if they share keys.

We note that the above principle has been followed in the design of real-world protocols

like IKE [59]. Also, Guttman and Fábrega have proved a theoretical result to the same ef-

fect in their strand space model [58]. Another rule of thumb (also recommended by Kelsey,

Schneier and Wagner in [72]), is the use of unique protocol identifiers to prevent a message

intended for use in one protocol to be mistaken for use in another protocol. This idea is also

founded on similar intuition. To give an example, in our logic, an invariant in proving an

authentication property could be: “if Bob generated a signature of a particular form, he sent

it in response to a particular message of a protocol”; adding the unique protocol identifier

114 CHAPTER 7. RELATED WORK

inside the signature will ensure that this invariant is trivially satisfied for all other proto-

cols, thereby allowing composability. However, many existing protocols do not follow this

principle.

It is well known that many natural security properties (e.g., noninterference) are not pre-

served either under composition or under refinement. This has been extensively explored

using trace-based modelling techniques [82, 84, 85, 86, 87], using properties that are not

first-order predicates over traces, but second-order predicates over sets of traces that may

not have closure properties corresponding to composition and refinement. In contrast, our

security properties are safety properties over sets of traces that satisfy safety invariants,

thus avoiding these negative results about composability.

There are some important differences between the way that we reason about incremen-

tal protocol construction and alternative approaches such as “universal composability” [26].

In universal composability, properties of a protocol are stated in a strong form so that the

property will be preserved under a wide class of composition operations. In contrast, our

protocol proofs proceed from various assumptions, including invariants that are assumed

to hold in any environment in which the protocol operates. The ability to reason about

protocol parts under assumptions about the way they will be used offers greater flexibility

and appears essential for developing modular proofs about certain classes of protocols.

Finally, we note that although there are some similarities between the composition

paradigm of PCL and the assume-guarantee paradigm in distributed computing [100], there

is also one important difference. In PCL, while composing protocols, we check that each

protocol respects the invariants of the other. This step involves an induction argument over

the steps of the two protocols. There is no reasoning about attacker actions. One way to see

the similarity with assume-guarantee is that each protocol is proved secure assuming some

property of the other protocol and then discharging this assumption. The difference lies in

the fact that the assumption made does not depend on the attacker although the environment

for each protocol includes the attacker in addition to the other protocol.

7.4. COMPUTATIONALLY SOUND SYMBOLIC PROTOCOL ANALYSIS 115

7.4 Computationally sound symbolic protocol analysis

Several groups of researchers have either formulated connections between symbolic logic

and feasible probabilistic computation, or developed relationships between symbolic and

computational models. In particular, Abadi and Rogaway [7] propose a logical characteri-

zation of indistinguishability by passive eavesdroppers that has been studied by a number

of others, and Kapron and Impagliazzo suggest a formal logic for reasoning about prob-

abilistic polynomial-time indistinguishability [67]. Some semantic connections between

symbolic and computational models have been developed by a team at IBM Zurich, e.g.,

[13], with other connections explored in a series of related papers by Micciancio, Warin-

schi, and collaborators [94, 125, 33]. Herzog [62, 63] shows that if a protocol attack exists

in a Dolev-Yao model, there is an attack in a computational model. More recent related

work also appears in [69, 33]. Currently, there is a lot of activity in this area and we expect

a number of other publications to appear soon.

Chapter 8

Conclusions and Future Work

In this dissertation, we have presented several results in the area of security analysis of

network protocols. Our main contribution is PCL—a logic for proving security properties

of network protocols. Security proofs in PCL are relatively short and intuitive and scale to

protocols of practical interest. Two central results for this logic are a composition theorem

and a computational soundness theorem. The composition theorem allows proofs of com-

plex protocols to be built up from proofs of their constituent sub-protocols. It is formulated

and proved by adapting ideas from the assume-guarantee paradigm for reasoning about

distributed systems. The computational soundness theorem guarantees that, for a class of

security properties and protocols, axiomatic proofs in a fragment of PCL carry the same

meaning as hand-proofs done by cryptographers. The soundness proof uses standard proof

techniques from cryptography, in particular, complexity-theoretic reductions. In addition,

we have developed an abstraction-refinement method for proving protocol properties in an

abstract template form using a higher-order extension of PCL. PCL has been applied to the

IEEE 802.11i protocol suite (which includes TLS as a component) [60] and to the IETF

GDOI protocol for secure group communication [92]. The second case study identified

a previously undiscovered flaw in the protocol. In ongoing work, PCL is being used to

analyze IKEv2 [71], IEEE 802.16e [2], Kerberos [106], and Mobile IPv6 [70] protocols.

A second major contribution is PDS—a framework for incremental protocol construction,

starting from simple components and extending them by applying a sequence of proto-

col transformation operations. PDS seeks to provide a rigorous foundation for common

116

117

protocol design practice. Finally, we demonstrate using process calculus techniques that

several related compositonal security definitions—universal composability, blackbox sim-

ulatability, and process equivalence—can be unified under reasonable assumptions about

the communication model.

Although these results represent significant advances in the state-of-the-art, it will take

several people a number of years to fully accomplish the goals of this program. One cur-

rent effort seeks to extend and further refine PCL [10]. Specific goals include extending

the programming language to model a larger class of protocols, simplifying the syntax

and proof system, and expanding the reasoning methods to cover a larger set of protocol

properties. While current applications focus on authentication and certain specific forms

of secrecy properties, in future work we hope to generalize the reasoning method for prov-

ing secrecy properties, and develop methods for modelling and reasoning about certain

forms of liveness properties like abuse-freeness, fairness, and denial-of-service protection.

Knowledge-based specifications [51] seem useful to capture certain properties like key con-

firmation. We also hope to investigate questions about the decidability of the full PCL as

well as fragments which are expressive enough to be useful in practice. The eventual goal

is to develop a practical tool for industrial use. One current tool effort encodes the syntax

and proof system of a fragment of PCL into Isabelle, a generic theorem-prover.

A second direction is to extend PCL to reason about security in different threat models.

Threat models can differ on several respects, in particular, the computational capabilities

of protocol principals and adversaries, and the degree of control the adversary has over the

network. While the core PCL allows the adversary complete control over the network, in

certain applications like Mobile IPv6, it is more realistic to assume that the attacker only

has access to certain parts of the network. The computational abilities of the adversary

spans the spectrum from a fixed set of actions in the symbolic model, to any polynomial

time computation in the complexity-theoretic model, and any computable function in the

information-theoretic model. The eventual goal is to develop a unified theory for reasoning

about security in a broad range of models. The work on Computational PCL presented

in this dissertation is a first step in this direction. In subsequent work, we hope to extend

the scope of this logic to allow its application to industrial protocols. Specific extensions

include expanding the set of cryptographic primitives modelled to cover digital signatures,

118 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

symmetric encryption, and message authentication codes, and to formalize properties of

protocols for key exchange following standard definitions in the cryptography literature.

Some progress has been made towards this goal [57, 41]. Other directions for further work

include developing a version of the logic that supports reasoning about concrete security

reductions and investigation of minimal requirements on cryptographic primitives to guar-

antee security properties of the protocols in which they are used. Besides serving as a

useful tool for reasoning about cryptography, we envision that this work will also help us

understand better certain fundamental questions about the logical nature of complexity-

theoretic reductions. To give a concrete example, we draw the attention of the reader to

the semantics of implication in CPCL. Implication uses conditional probabilty. We note

that the reason for this is the fact that most security definitions in cryptography are stated

in terms of conditional probability. Consequently, the propositional fragment is not classi-

cal. While there appear to be some connections with probabilistic logics [107], the precise

nature of the logic bears further investigation.

While most of the results in this dissertation focus on analysis of secure network pro-

tocols, PDS represents a step towards a systematic theory of protocol design. The cur-

rent work can be extended in several directions. One medium-term goal is to use PDS to

syntactically derive a library of practical protocols, starting from basic components like

challenge-response and Diffie-Hellman key exchange. Another goal is to develop proof

methods in PCL for each derivation operation in PDS. Specifically, a formal theory of pro-

tocol transformations is yet to emerge. The acid test for PDS is a case study where an open

standards protocol gets developed using some tool that implements this framework. One

such tool effort is underway.

Finally, the results in this dissertation provide a good starting point for a deeper in-

vestigation of the composition problem in computer security and cryptography. The im-

portance of compositional methods in the design and analysis of secure systems is now

widely recognized (cf. [126]). However, there is no comprehensive foundational theory for

secure composition of secure systems and software. We believe that the assume-guarantee

paradigm developed for PCL might be applicable to these other kinds of security mecha-

nisms. In the field of cryptography also, the composition problem has received significant

119

attention. One current approach to this problem is the framework of universal composabil-

ity [26, 114]. The universal composability condition provides strong composition guaran-

tees: a primitive or protocol that satisfies this condition retains its security guarantees in

any environment in which it is used. In contrast, the assume-guarantee paradigm of PCL

only allows conditional composability: a protocol is secure only in an environment which

satisfies a certain set of invariant assumptions associated with the protocol. The ability to

reason about protocols under assumptions about the way they will be used offers greater

flexibility and appears essential for developing modular proofs about certain classes of pro-

tocols. In addition, a number of impossibility results about the realizability of UC-secure

primitives and protocols [26, 29, 40] indicates that the UC condition may be too stringent

to apply to certain protocols of interest.

Bibliography

[1] IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements,

amendment 6 to IEEE Standard for local and metropolitan area networks part 11:

Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications.,

April 2004.

[2] IEEE P802.16e/D10.0. IEEE Standard for local and metropolitan area networks. part

16: Air interface for fixed and mobile broadband wireless access systems. amend-

ment for physical and medium access control layers for combined fixed and mobile

operation in licensed bands., August 2005.

[3] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.

In 28th ACM Symposium on Principles of Programming Languages, pages 104–115,

2001.

[4] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.

Information and Computation, 148(1):1–70, 1999. Expanded version available as

SRC Research Report 149 (January 1998).

[5] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocol. In

Proc. ESOP 98, Lecture notes in Computer Science. Springer, 1998.

[6] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi calcu-

lus. Information and Computation, 143:1–70, 1999. Expanded version available as

SRC Research Report 149 (January 1998).

120

BIBLIOGRAPHY 121

[7] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-

tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,

2002.

[8] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A.D. Keromytis, and

O. Reingold. Just fast keying (JFK), 2002. Internet draft.

[9] J. Alves-Foss and T. Soule. A weakest precondition calculus for analysis of cryp-

tographic protocols. In DIMACS Workshop on Design and Formal Verification of

Crypto Protocols, 1997.

[10] M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Compositional anal-

ysis of contract-signing protocols. In Proceedings of 18th IEEE Computer Security

Foundations Workshop, pages 94–110. IEEE, 2005.

[11] M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Compositional anal-

ysis of contract signing protocols. In Proceedings of 18th IEEE Computer Security

Foundations Workshop. IEEE, 2005. to appear.

[12] M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes. In

Proceedings of 6th Information Security Conference, volume 2851 of Lecture Notes

in Computer Science, pages 84–95. Springer, 2003.

[13] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic

library. Cryptology ePrint Archive, Report 2003/015, 2003.

[14] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for

secure reactive systems. In Proceedings of 1st Theory of Cryptography Conference,

volume 2951 of Lecture Notes in Computer Science. Springer, 2004.

[15] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, New

York, 1999. Third Edition.

[16] M. Baugher, B. Weis, T. Hardjono, and H. Harney. The Group Domain of Interpre-

tation, 2003. RFC 3547.

122 BIBLIOGRAPHY

[17] S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis,

University of Toronto, 1992.

[18] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user set-

ting: Security proofs and improvements. In Advances in Cryptology - EUROCRYPT

2000, Proceedings, pages 259–274, 2000.

[19] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and

analysis of authentication and key exchange protocols. In Proceedings of 30th An-

nual Symposium on the Theory of Computing. ACM, 1998.

[20] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances

in Cryprtology - Crypto ’93 Proceedings. Springer-Verlag, 1994.

[21] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-

ceedings of the 13th Annual International Cryptology Conference on Advances in

Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

[22] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217–248, 1992.

[23] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Sys-

tematic design of a family of attack resistant authentication protocols. IEEE Journal

on Selected Areas in Communications, 1(5), June 1993.

[24] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transac-

tions on Computer Systems, 8(1):18–36, 1990.

[25] L. Buttyan, S. Staamann, and U. Wilhelm. A simple logic for authentication protocol

design. In Proceedings of 11th IEEE Computer Security Foundations Workshop,

pages 153–162. IEEE, 1999.

[26] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-

tocols. In Proc. 42nd IEEE Symp. on the Foundations of Computer Science. IEEE,

2001. Full version available at http://eprint.iacr.org/2000/067/.

BIBLIOGRAPHY 123

[27] R. Canetti and M. Fischlin. Universally composable commitments. In Proc.

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 19–40,

Santa Barbara, California, 2001. Springer.

[28] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and

secure channels. In Advances in Cryptology—EUROCRYPT 2002, volume 2332 of

Lecture Notes in Computer Science, pages 337–351. Springer, 2002.

[29] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally

composable two-party computation without set-up assumptions. In Advances in

Cryptology—EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Sci-

ence, pages 68–86. Springer, 2003.

[30] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-

party and multi-party secure computation. In Proc. ACM Symp. on the Theory of

Computing, pages 494–503, 2002.

[31] R. Canetti, C. Meadows, and P. Syverson. Environmental requirements for authenti-

cation protocols. In Proceedings of Software Security - Theories and Systems, Mext-

NSF-JSPS International Symposium, ISSS, LNCS 2609, pages 339–355. Springer-

Verlag, 2003.

[32] J. A. Clark and J. L. Jacob. Searching for a solution: Engineering tradeoffs and

the evolution of provably secure protocols. In Proceedings IEEE Symposium on

Research in Security and Privacy, pages 82–95. IEEE, 2000.

[33] V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-

curity protocols. In Proceedings of 14th European Symposium on Programming

(ESOP’05), Lecture Notes in Computer Science. Springer-Verlag, 2005.

[34] I. Damgard and J. B. Nielsen. Universally composable efficient multiparty computa-

tion from threshold homomorphic encryption. In Proc. CRYPTO 2003, volume 2729

of Lecture Notes in Computer Science, pages 247–264, Santa Barbara, California,

2003. Springer.

124 BIBLIOGRAPHY

[35] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-

rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer

Security Foundations Workshop, pages 109–125. IEEE, 2003.

[36] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition

(Extended abstract). In Proceedings of ACM Workshop on Formal Methods in Secu-

rity Engineering, pages 11–23, 2003.

[37] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and refinement in

protocol derivation. In Proceedings of 17th IEEE Computer Security Foundations

Workshop, pages 30–45. IEEE, 2004.

[38] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compo-

sitional logic for security protocols. Journal of Computer Security, 2004. to appear.

[39] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition. In

Proceedings of 19th Annual Conference on Mathematical Foundations of Program-

ming Semantics, volume 83 of Electronic Notes in Theoretical Computer Science,

2004.

[40] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan, and A. Scedrov. The impossi-

bility of realizable ideal functionality. Cryptology ePrint Archive, Report 2005/211,

2005.

[41] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Key exchange protocols:

Security definition, proof method and applications, 2005. In preparation.

[42] A. Datta, R. Küsters, J.C. Mitchell, and A. Ramanathan. On the Relationships Be-

tween Notions of Simulation-Based Security. In J. Kilian, editor, Proceedings of

the 2nd Theory of Cryptography Conference (TCC 2005), volume 3378 of Lecture

Notes in Computer Science, pages 476–494. Springer-Verlag, 2005.

[43] A. Datta, J. C. Mitchell, and D. Pavlovic. Derivation of the JFK protocol. Technical

Report KES.U.02.03, Kestrel Institute, 2002.

[44] T. Dierks and C. Allen. The Tls Protocol Version 1.0, 1999. RFC 2246.

BIBLIOGRAPHY 125

[45] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, 1976.

[46] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated

key exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.

[47] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions

on Information Theory, 2(29), 1983.

[48] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions

on Information Theory, 2(29):198–208, 1983.

[49] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol

correctness. In Proceedings of 14th IEEE Computer Security Foundations Workshop,

pages 241–255. IEEE, 2001.

[50] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving secu-

rity properties of protocols. Journal of Computer Security, 11:677–721, 2003.

[51] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses. Reasoning about knowledge.

MIT Press, 1995.

[52] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathemat-

ical Aspects of Computer Science: Proceedings of American Mathematics Society

Symposia, volume 19, pages 19–31, Providence RI, 1967. American Mathematical

Society.

[53] A. Freier, P. Karlton, and P. Kocher. The SSL protocol version 3.0.

draft-ietf-tls-ssl-version3-00.txt, November 18 1996.

[54] W. D. Goldfarb. The undecidability of the second-order unification problem. Theo-

retical Computer Science, 13:225–230, 1981.

[55] L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in Cryptographic

Protocols. In Deborah Cooper and Teresa Lunt, editors, Proceedings 1990 IEEE

Symposium on Research in Security and Privacy, pages 234–248. IEEE Computer

Society, 1990.

126 BIBLIOGRAPHY

[56] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure

protocols. Dependable Computing for Critical Applications, 5:79–100, 1998.

[57] P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of

key exchange protocols. Cryptology ePrint Archive, Report 2005/171, 2005.

[58] J. D. Guttman and F. J. T. Fábrega. Protocol independence through disjoint encryp-

tion. In Proceedings of 13th IEEE Computer Security Foundations Workshop, pages

24–34. IEEE, 2000.

[59] D. Harkins and D. Carrel. The Internet Key Exchange (IKE), 1998. RFC 2409.

[60] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular cor-

rectness proof of tls and ieee 802.11i. In 12th ACM Conference on Computer and

Communications Security (CCS), 2005. To appear.

[61] N. Heintze and J. D. Tygar. A model for secure protocols and their composition.

IEEE Transactions on Software Engineering, 22(1):16–30, January 1996.

[62] J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In

Proceedings of 16th IEEE Computer Security Foundations Workshop, pages 234–

247, 2003.

[63] J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryptog-

raphy. PhD thesis, MIT, 2004.

[64] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 1969.

[65] M. Hofmann. Type Systems for Polynomial-Time Computation. Habilitation Thesis,

Darmstadt; see www.dcs.ed.ac.uk/home/mxh/papers.html, 1999.

[66] IEEE. Entity authentication mechanisms – part 3: Entity authentication using asym-

metric techniques. Technical report ISO/IEC IS 9798-3, ISO/IEC, 1993.

BIBLIOGRAPHY 127

[67] R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-

structions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of

Computer Science (FOCS ’03), pages 372–383. IEEE, 2003.

[68] M. Jakobsson J. A. Garay and P. MacKenzie. Abuse-free optimistic contract sign-

ing. In Proceedings of the 19th Annual International Cryptology Conference on

Advances in Cryptology, pages 449–466. Springer-Verlag, 1999.

[69] R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of for-

mal encryption in the presence of active adversaries. In Proceedings of 14th Euro-

pean Symposium on Programming (ESOP’05), Lecture Notes in Computer Science.

Springer-Verlag, 2005.

[70] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6, 2004. RFC 3775.

[71] C. Kauffman. Internet Key Exchange (IKEv2) protocol, 2004. Internet Draft.

[72] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen protocol

attack. In Proceedings of the International Workshop on Security Protocols, April

1997.

[73] S. Kent and R. Atkinson. Security architecture for the internet protocol, 1998. RFC

2401.

[74] H. Krawczyk. Sigma: The sign-and-mac approach to authenticated diffie-hellman

and its use in the IKE protocols. In Advances in Cryptology - CRYPTO 2003, volume

2729, pages 400–425. Springer-Verlag Heidelberg, 2003.

[75] Hugo Krawczyk. The IKE-SIGMA protocol, 2002. Internet draft.

[76] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-

time equivalence and security protocols. In Jeannette M. Wing, Jim Woodcock, and

Jim Davies, editors, Formal Methods World Congress, vol. I, number 1708 in Lecture

Notes in Computer Science, pages 776–793, Toulouse, France, 1999. Springer.

128 BIBLIOGRAPHY

[77] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-

time framework for protocol analysis. In ACM Conf. Computer and Communication

Security, 1998.

[78] G. Lowe. An attack on the Needham-Schroeder public-key protocol. Info. Proc.

Letters, 56:131–133, 1995.

[79] G. Lowe. Some new attacks upon security protocols. In Proceedings of 9th IEEE

Computer Security Foundations Workshop, pages 162–169. IEEE, 1996.

[80] N. Lynch. I/O automata models and proofs for shared-key communication systems.

In Proceedings of 12th IEEE Computer Security Foundations Workshop, pages 14–

29. IEEE, 1999.

[81] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, 1995.

[82] H. Mantel. On the Composition of Secure Systems. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 88–101, Oakland, CA, USA, May 12–

15 2002. IEEE Computer Society.

[83] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

[84] D. McCullough. Noninterference and the composability of security properties. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 177–186, Oak-

land, CA, USA, May 1988. IEEE Computer Society.

[85] D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on

Software Engineering, 16(6):563–568, 1990.

[86] J. McLean. Security models and information flow. In Proceedings of the IEEE Sym-

posium on Security and Privacy, Oakland, CA, USA, May 1990. IEEE Computer

Society.

[87] J. McLean. A general theory of composition for a class of “possibilistic” properties.

IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

BIBLIOGRAPHY 129

[88] C. Meadows. A model of computation for the NRL protocol analyzer. In Proceed-

ings of 7th IEEE Computer Security Foundations Workshop, pages 84–89. IEEE,

1994.

[89] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-

ming, 26(2):113–131, 1996.

[90] C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL proto-

col analyzer. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE,

1998.

[91] C. Meadows. Open issues in formal methods for cryptographic protocol analysis. In

Proceedings of DISCEX 2000, pages 237–250. IEEE, 2000.

[92] C. Meadows and D. Pavlovic. Deriving, attacking and defending the gdoi protocol.

In ESORICS, pages 53–72, 2004.

[93] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1996.

[94] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence

of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC

2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer-

Verlag, 2004.

[95] R. Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, 1989.

[96] R. Milner. Action structures. LFCS report ECS-LFCS-92-249, Department of

Computer Science, University of Edinburgh, JCMB, The Kings Buildings, Mayfield

Road, Edinburgh, December 1992.

[97] R. Milner. Action calculi and the pi-calculus. In NATO Summer School on Logic

and Computation, Marktoberdorf, November 1993.

130 BIBLIOGRAPHY

[98] R. Milner. Action calculi, or syntactic action structures. In Andrzej M.

Borzyszkowski and Stefan Sokolowski, editors, Proceedings of MFCS’93, volume

711 of Lecture Notes in Computer Science, pages 105–121. Springer, 1993.

[99] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-

versity Press, Cambridge, U.K, 1999.

[100] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions on

Software Engineering, 7(4):417–426, 1981.

[101] J. C. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded

oracle computation and probabilistic polynomial time. In Proc. 39th Annual IEEE

Symposium on the Foundations of Computer Science, pages 725–733, Palo Alto,

California, 1998. IEEE.

[102] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic

protocols using Murϕ. In Proc. IEEE Symp. Security and Privacy, pages 141–151,

1997.

[103] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic

polynomial-time calculus for the analysis of cryptographic protocols (preliminary

report). In Stephen Brookes and Michael Mislove, editors, 17th Annual Confer-

ence on the Mathematical Foundations of Programming Semantics, Arhus, Den-

mark, May, 2001, volume 45. Electronic notes in Theoretical Computer Science,

2001.

[104] V. Shoup N. Asokan and M. Waidner. Asynchronous protocols for optimistic fair

exchange. In Proceedings of the IEEE Symposium on Research in Security and

Privacy, pages 86–99. IEEE, 1998.

[105] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[106] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authenti-

cation Service (v5), 2005. RFC 4120.

BIBLIOGRAPHY 131

[107] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

[108] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions

on Information and System Security, 2(3):332–351, 1999.

[109] L.C. Paulson. Mechanized proofs for a recursive authentication protocol. In 10th

IEEE Computer Security Foundations Workshop, pages 84–95, 1997.

[110] L.C. Paulson. Proving properties of security protocols by induction. In 10th IEEE

Computer Security Foundations Workshop, pages 70–83, 1997.

[111] D. Pavlovic. Categorical logic of names and abstraction in action calculi. Mathe-

matical Structures in Computer Science, 7(6):619–637, 1997.

[112] D. Peled. Software Reliability Methods. Springer-Verlag, 2001.

[113] A. Perrig and D. Song. A first step towards the automatic generation of security

protocols. In Proceedings of ISOC Network and Distributed Systems Security Sym-

posium, 2000.

[114] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its

application to secure message transmission. In IEEE Symposium on Security and

Privacy, pages 184–200, Washington, 2001.

[115] A. Ramanathan, J. C. Mitchell, A. Scedrov, and V. Teague. Probabilistic bisimula-

tion and equivalence for security analysis of network protocols. Unpublished, see

http://www-cs-students.stanford.edu/˜ajith/, 2003.

[116] A. Ramanathan, J. C. Mitchell, A. Scedrov, and V. Teague. Probabilistic bisimulation

and equivalence for security analysis of network protocols. In FOSSACS 2004 -

Foundations of Software Science and Computation Structures, March 2004.

[117] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and

FDR. In 8th IEEE Computer Security Foundations Workshop, pages 98–107. IEEE

Computer Soc Press, 1995.

132 BIBLIOGRAPHY

[118] S. Schneider. Security properties and CSP. In IEEE Symp. Security and Privacy,

1996.

[119] D. Song. Athena: a new efficient automatic checker for security protocol analysis.

In Proceedings of 12th IEEE Computer Security Foundations Workshop, pages 192–

202. IEEE, 1999.

[120] P. Syverson and C. Meadows. A formal language for cryptographic protocol require-

ments. Designs, Codes and Cryptography, 7(1-2):27–59, 1996.

[121] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics.

In Proc. IEEE Symposium on Research in Security and Privacy, pages 14–28, 1994.

[122] F. J. Thayer-Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a

security protocol correct? In Proceedings of the 1998 IEEE Symposium on Security

and Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer Society

Press.

[123] F. J. Thayer-Fábrega, J. C. Herzog, and J. D. Guttman. Mixed strand spaces. In

Proceedings of 12th IEEE Computer Security Foundations Workshop. IEEE, 1999.

[124] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative, and strat-

ified models of probabilistic processes. International Journal on Information and

Computation, 121(1), August 1995.

[125] B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-

col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248–

262. ACM Press, 2003.

[126] J. M. Wing. Beyond the horizon: A call to arms. IEEE Security and Privacy, 2003.

[127] T. Y. C. Woo and S. C. Lam. A semantic model for authentication protocols. In

Proceedings IEEE Symposium on Research in Security and Privacy, 1993.

Appendix A

Cord Calculus

Cord calculus is the basic action structure [97, 98, 111] that we use to represent protocols.

It was introduced in [49, 50]. Here we provide a brief summary. Cord calculus was inspired

by the strand space formalism [122], which conveniently formalizes the practice of describ-

ing protocols by ”arrows-and-messages”, and displays the distributed traces of interacting

processes. However, while strand spaces provide a global and static view of the information

flow, we needed to analyze dynamics of distributed reasoning and computation. In order

to formally capture the ways in which principals’ actions (e.g. what they receive) may de-

termine and change their later action (e.g. what they will send), we extended strand spaces

by an operational semantics in the style of chemical abstract machine [22]. To represent

the stores where the messages are received, we added variables, and a substitution mech-

anism expressed by simple reaction rules, corresponding to the basic communication and

computation operations. The result is a simple process calculus, combining strand spaces

and chemical abstract machine. This is our protocol execution model.

Its formal components are as follows.

A.1 Terms, Actions, Strands and Cords

A basic algebra of terms t is assumed to be given. As usually, they are built from constants

c and variables x, by a given set of constructors p, which in this case includes at least the

tupling, the public key encryption {|t|}K , and the signature {|t|}K . The decryption and the

133

134 APPENDIX A. CORD CALCULUS

(names) N ::= X̂ variable name
Â constant name

(agents) P ::= X variable agent
A constant agent

(basic keys) K0 ::= k constant key
y variable key
N name

(keys) K ::= K0 basic key
K0 inverse key

(terms) t ::= x variable term
c constant term
N name
P agent
K key
t, t tuple of terms
{|t|}K term encrypted with key K
{|t|}K term signed with key K

(actions) a ::= ε the null action
〈t〉 send a term t
(x) receive term into variable x
(νx) generate new term x
(t/t) match a term to a pattern

(strands) S ::= aS | a

Table A.1: Syntax of terms, actions and strands

signature verification subsume under pattern matching. The dedicated operations could be

readily added. We assume enough typing to distinguish the keys K from the agents A, the

nonces n and so on. Each type is given with enough variables. As usually, the computation

is modelled as term evaluation. The closed terms, that can be completely evaluated, can be

sent as messages. The terms containing free variables cannot be sent until the variables are

bound to some values, received or generated.

The language of actions, built upon the language of terms, describes communication

and computation. The actions here include sending a term 〈t〉, receiving into a variable (x),

matching a term against a pattern (t/q(x)), and creating a new value (νx). As appropriate,

A.2. CORD SPACES, AGENTS AND PROCESSES 135

further actions can be added to the calculus. For instance, to model Kerberos we add the

action ”read time”.

A list of actions is called strand1. The idea is that a strand represents a sequence of

actions of an agent. For example, the strand (νx)〈x〉A tells that the agent A generates a

fresh value into the variable x and then sends it out as a message. In a strand, each of the

actions (x), (t/p(x)) and (νx) all binds the free occurrences of x that appear on the right.2

As usually, the bound variables are taken up to renaming, i.e. α-conversion. Operational

semantics of the binding operations is given below, in terms of the substitution: e.g., a value

is received in (x) is propagated through the occurrences of x bound to that operator.

A cord is an equivalence class of semantically indistinguishable strands, annotated by

the name of the agent executing it. For some processes, the order of actions may be irrele-

vant, even unobservable: e.g., some constant streams c and d may be sent in arbitrary order,

or in parallel, while the same process is independently receiving into a variable y. So the

strands like 〈c〉〈d〉(y), 〈d〉(y)〈c〉 etc. may be viewed as equivalent. When needed, the order

of actions can be imposed using the tupling of variables. By identifying equivalent strands,

we get cords. The equivalence class containing the strand S of agent A is written as [S]A.

We often elide the agent name, when it is irrelevant, or obvious. The inaction is denoted

by the empty cord []. We assume that [] = []X holds for all agents X . (There is just one

silence.)

Since the semantic equivalence of strands does not play a role in the present paper,

cords are here just lists of actions with variables, annotated by the agent names whenever

nonempty. Table A.1 summarizes the formal definition of cords.

A.2 Cord Spaces, Agents and Processes

The idea of a cord space is that it represents a system of agents ready to engage in commu-

nication and distributed computation. Formally, a cord space is a nonempty multiset (bag)

of cords, usually in the form C = {[S1]A1
, [S2]A2

, . . . [Sk]Ak
}, where each Si is a nonempty

1This is slightly more general than the original strands from [122], because the term calculus, underlying
actions, contains variables and substitution.

2The tradition of denoting the operators binding x by the round brackets around it goes back to Milner
[98, 97].

136 APPENDIX A. CORD CALCULUS

[S(x)S ′]⊗ [T 〈t〉T ′]⊗ C .. [SS ′(t/x)]⊗ [TT ′]⊗ C (A.1)

[S (p(t)/p(x))S ′]⊗ C .. [SS ′(t/x)]⊗ C (A.2)

[S(νx)S ′]⊗ C .. [SS ′(m/x)]⊗ C (A.3)

Where the following conditions must be satisfied:
(A.1) FV (t) = ∅
(A.2) FV (t) = ∅
(A.3) m 6∈ FV (S) ∪ FV (S ′) ∪ FV (C)

Table A.2: Basic reaction steps

strand. The only cord space which is not in this form is {[]}. We abuse notation, and write

it as []. Cord spaces can thus be viewed as the elements of the free commutative monoid

(C,⊗, []) generated by cords. The monoid operation⊗ is the union of multisets, except that

C ⊗ [] = []⊗ C = C holds by definition.

Table A.2 gives an operational semantics of cord spaces. In all rules, we assume that the

name clashes are avoided by renaming the bound variables. The respective side conditions,

required for each of the reactions, are shown in the same table. The substitution (t/x)

acts on the strand to the left. Reaction (A.1) is a send and receive interaction, showing the

simultaneous sending of term t by the first cord, with the receiving of t into variable x by

the second cord. We call this an external action because it involves an interaction between

two cords. The other reactions all take place within a single cord. We call these internal

actions. Reaction (A.2) represents basic pattern matching, where the cord matches the

term p(t) with the expected pattern p(x), and substitutes t for x. Reaction (A.3) generates

a fresh value m, and substitutes it for x in the cord to the right. The condition FV (t) = ∅,

imposed on the first two reactions, means that a term cannot be sent, or tested, until all

of its free variables have been instantiated, so that it can be evaluated. The condition

m 6∈ FV (S) ∪ FV (S ′) ∪ FV (C) on the last rule means that the value m, created by (νx),

must be globally fresh. This is modeled by treating it as a variable which does not occur

anywhere in the process.

A.2. CORD SPACES, AGENTS AND PROCESSES 137

Cord category

Category theory (see, e.g., [15]) is a general mathematical framework that is used in various

ways in the study of algebra, semantics of computation, and logical foundations. Without

going into all of the steps in detail, we describe a category of cords that highlights the main

constructions that are used in this paper. This cord category involves both sequential and

parallel composition of cords and cord spaces.

By definition, a process is a cord space, together with an explicit input interface con-

sisting of a sequence of distinct variables and an explicit output interface consisting of a

sequence of terms. A process s may be written in the form

s = (y0 . . . ym−1)S〈t0 . . . tn−1〉

where (y0 . . . ym−1) is an input interface, S is a cord space, and 〈t0 . . . tn−1〉 is an output

interface. If S is a single cord and all free variables of S are bound by the input interface,

then we call this process a closed cord. Intuitively, the input variables y0, . . . ym−1 repre-

sent the entry ports and the output terms t0, . . . tn−1 are offered at the exit ports. While the

input interface variables must be distinct, the output values need not be mutually differ-

ent. The input interface binds the variables y0, . . . ym−1 and α-equivalents define the same

process. In other words, renaming y0, . . . ym−1 throughout S and t0 . . . tn−1 yields another,

equivalent representative of the same process.

The morphisms of the cord category C are processes given by α-equivalence classes

of process expressions such as s above. The objects of the cord category C are the arities

of such processes. An arity is a list of variables, such as (y0 . . . ym−1), modulo renaming.

Ignoring the types of variables as before, an arity thus boils down to a number, in this

case m = {0, 1, . . .m − 1}. If the objects of the category C are identified with the natural

numbers, then the process s written above becomes a morphism s : m −→ n. More

intuitively, and in the tradition of functorial semantics, one might prefer to write the arity of

m variables as the exponent Am of some abstract ground type A (which itself corresponds

to the generator 1 of the arities, since A = A1). The process s thus becomes s : Am −→

An. The formal justification for this will become clearer after we spell out the categorical

structure of C.

138 APPENDIX A. CORD CALCULUS

Given the morphisms

r = (x0 . . . x`−1)R〈u0 . . . um−1〉 : A` −→ Am

s = (y0 . . . ym−1)S〈t0 . . . tn−1〉 : Am −→ An

their sequential composition is defined

(r; s) = (x0 . . . x`−1)RS
′〈t′0 . . . t

′
n−1〉 : A` −→ An

where S ′ and t′i are the substitution instances of S and ti, respectively, with each variable yk

replaced by the term uk. In performing these substitutions, the variables must be chosen (or

renamed) so that the free variables of S, tj and uk do not become bound in r; s. Intuitively,

the cord space RS ′ corresponds to running in sequence, for each agent X , the actions of X

in R followed by the actions of X in S ′. This leads to the definition

RS ′ = {[UV]X | [U]X ∈ R, [V]X ∈ S
′}

A less syntactic and possibly more elegant view is that if the cord spaces R and S ′ are

regarded as partially-ordered multisets (pomsets) of actions, thenRS ′ is their concatenation

in the usual sense for partial orders, putting R before S ′. If R and S ′ have no common

agents, then RS ′ is inactive. On the other hand, since [] = []X for all X , the process

idm = (y0 . . . ym)[]〈y0 . . . ym〉 : Am −→ Am

is the identity.

We may also define parallel composition on processes. Given, furthermore, a morphism

p : Ak −→ A`, in the form

p = (z0 . . . zk−1)P 〈v0 . . . v`−1〉

the parallel composition p⊗ s : Ak+m −→ A`+n may be defined

p⊗ s = (~z~y)P ⊗ S〈~v~t〉

A.2. CORD SPACES, AGENTS AND PROCESSES 139

with bound variables of p and s renamed so that the concatenation ~z~y of variables in their

input interfaces produces a sequence of distinct variables. The parallel composition opera-

tor ⊗ forms a tensor on objects and morphisms, with the tensor unit I the arity A0.

With this structure, C turns out to be the free monoidal category generated by the ob-

ject A = A1, and the morphisms ()[(νx)]Y 〈x〉 : I −→ I , ()[(x)]Y 〈x〉 : I −→ I and

()[〈x〉]Y 〈x〉 : I −→ A, corresponding to the basic actions, together with the variable mor-

phisms ()[]〈x〉 : I −→ A, and the generic abstraction operators, binding the variables to

the entry ports. Formally, this follows from the results of [111]. Intuitively, the univer-

sal property of C can perhaps be understood by noticing, first of all, that a process in the

form (y0, . . . ym−1)[]〈v0, . . . vn−1〉 : m −→ n, where {v0, . . . vn−1} ⊆ {y0, . . . ym−1} rep-

resents a function from n to m (backwards!). This is a trivial process, assigning to each

exit port a unique entry port, from which it simply copies the values. The subcategory of

C spanned by such processes is thus isomorphic with the opposite of the category of fi-

nite sets and functions. This subcategory of C is thus the free cartesian category over one

generating object A = A1 representing the arity 1. In particular, the morphisms (xy)[]〈x〉

and (xy)[]〈y〉 are the projections, and (x)[]〈xx〉 is the diagonal for the cartesian products,

whereas (x)[]〈〉 is the unique map to the unit type I = A0. However, when we add the mor-

phisms where agents send and receive messages, and generate fresh values, and close all

that under the categorical operations, variables and abstraction, we get the cord category,

which is still monoidal, but not cartesian (because the projections and the diagonals are not

natural, polymorphic operations with respect to the morphisms with nontrivial actions).

For simplicity, we have so far systematically ignored the typing of the terms and vari-

ables in cord calculus. In fact, any type structure of the term language of cords may be

directly reflected on the generated cord category. If we distinguish a type K of keys, for

example, the cord category will be generated not by one, but by two generators, say A

and K; if we also distinguish nonces, there will be three generators. Less trivially, if the

type of keys is taken to be indexed over the type of agents, as the family K(X), where

X : Agents, then the arities will not be just lists of independent variables, as above, but

will be the contexts of dependent types. Since a key variable x : K(X) can be assigned

only after the variable X : Agent on which it depends has been assigned, the interfaces will

need to display typing and dependencies. The precise syntax for such arities can be found

140 APPENDIX A. CORD CALCULUS

on the early pages of [83], for example. The objects of the resulting cord category are then

the closed type expressions, not just in the form Ak =
∏

k A, but also e.g.
∏

X:AK(X).

The combination of reaction rules and the categorical structure of cord spaces consti-

tutes our process model. While the dynamic binding of variables, defined by the reaction

rules, captures the communication and the computation in cord spaces, the static binding,

defined by the categorical operations, allows composition of agents from operations, or

from various component processes; and it also allows sharing ports and resources between

different agents statically, i.e., without sending any messages. Composition of processes

allows composition of protocols. Sharing resources allows modeling principals and attack-

ers, which can play several roles in one or more protocol sessions, and be subdivided into

agents in various ways.

A.3 Protocols

A protocol Q is defined by a finite set of roles, such as initiator, responder and server,

each specified by a closed cord describing actions to be executed in a single instance of a

role. A principal is a set of agents sharing all static data, such as keys, but directly, and

not by messages. This is formalized using static binding, described above. We will denote

principals by Â, B̂, etc. An agent executing a single instance of a particular role will be

called thread. As a notational convenience, we will use X to denote a thread of a principal

X̂ .

A private key is a key of form X , which represents the decryption key in a public key

cryptosystem. Private key X is only allowed to occur in the threads of principal X̂ . More-

over, it is only allowed to occur in the decryption pattern (corresponding to a participant

decrypting a message encrypted by its public key) and in the signature construction (cor-

responding to a participant signing a message).These restrictions prevent private keys from

being sent in a message. While some useful protocols might send private keys, we prevent

roles from sending their private keys (in this paper) since this allows us to take secrecy of

private keys as an axiom, shortening proofs of protocol properties.

A.3. PROTOCOLS 141

A.3.1 Intruder roles

An attack is usually a process obtained by composing a protocol with another process, in

such a way that the resulting runs, projected to the protocol roles, do not satisfy the protocol

requirements. An attacker, or intruder, is a set of threads sharing all data in an attack,

and playing roles in one or more protocol sessions. The actions available for building

the intruder roles usually include receiving and sending messages, decomposing them into

parts, decrypting them by known keys, storing data, and even generating new data. This

is the standard “Dolev-Yao model”, which appears to have developed from positions taken

by Needham and Schroeder [105] and a model presented by Dolev and Yao [47].

A.3.2 Buffer cord

Cords reactions, as we defined them, can only model synchronous communication – a

message send action cannot happen in one cord unless a message receive action happens

simultaneously. Since real communication networks are asynchronous, we need to intro-

duce a buffer where sent messages can be stored until someone is ready to receive them.

In order to model this with cords we introduce a buffer cord [(x)〈x〉], it models a mesage

being received and than eventually send. We will require that all send and receive actions

by principals and the intruder are performed via buffer cords and assume that in every pro-

tocol there are enough instances of the buffer cord to guarantee delivery of every message.

Buffer cords are a part of the infrastructure rather than a part of the protocol, we assume

that they are executed by special nameless agents. Unless otherwise specified, when we

refer to a thread, we mean a non-buffer thread, similarly, when we refer to an action, we

mean an action performed by a non-buffer thread.

A.3.3 Configurations and runs

Initial configuration of a protocol Q is determinded by: (1) A set of principals, some

of which are designated as honest. (2) A cordspace constructed by assigning roles of Q

to threads of honest principals. (3) An intruder cord, which may use keys of dishonest

principals. (4) A finite number of buffer cords, enough to accommodate every send action

142 APPENDIX A. CORD CALCULUS

by honest threads and the intruder threads. A run R is a sequence of reaction steps from

the initial configuration, subject to constraint that every send/receive reaction step happens

between some buffer cord and some (non-buffer) thread. A particular initial configuration

may give rise to many possible runs.

A.3.4 Events and traces

Since the protocol logic we introduce reasons about protocol runs, we need to introduce

some additional notation for them. An event is a ground substitution instance of an action,

i.e., an action in which all variables have been replaced by terms containing only constants.

An event represents the result of a reaction step, viewed from the perspective of a single

cord that participated in it. For example, if the thread A sends message m (into a receiving

buffer cord), then the event 〈m〉 is a send event of A. Alternatively, we can a look at a run

as a linear sequence of events starting from an initial configuration.

We use the following notation to describe a reaction step of cord calculus:

EVENT (R,X, P, ~n, ~x) ≡ (([SPS ′]X ⊗ C . . [SS ′(~n/~x)]X ⊗ C
′) ∈ R)

In words, EVENT (R,X, P, ~n, ~x) means that in run R, thread X executes actions P , re-

ceiving data ~n into variables ~x, where ~n and ~x are the same length. We use the notation

LAST (R,X, P, ~n, ~x) to denote that the last event of run R is EVENT (R,X, P, ~n, ~x).

A trace is a list of events by some thread in a run. We use R|X to denote the events

that occurred for thread X in run R. For a sequence of actions P , protocol Q, run R and

thread X , we say “P matches R|X” if R|X is precisely σP , where σ is a substitution of

values for variables. If P matches R|X using substitution σ, then σ is called the matching

substitution.

A.3.5 Protocol properties

In this section we collect some properties of the protocols that will be useful in the rest of

the paper.

Lemma A.3.1. (No Telepathy) Let Q be a protocol, R be an arbitrary run, and X be a

A.3. PROTOCOLS 143

thread. Let m be any message sent by X as part of role ρi. Then every symbol in the term

m is either generated in ρi, received in ρi, or was in the static interface of ρi.

Proof. This follows from the definition of the cords we use to represent roles. Each role

is a closed process, where each variable is bound either statically, to some entry port, or

dynamically, to some receive action, or fresh value generation, or to a pattern match.

Lemma A.3.2. (Asynchronous communication) In every run, any thread that wished to

send a message can always eventually send it. Also, there is a strict linear order between

all external actions.

Proof. By definition, there are enough buffer cords in the initial configuration to provide

a receive for every send action by a non-buffer thread. Since “external action” refers to a

send or a receive by a non-buffer thread, it follows from the definition of a run that no two

external actions can happen in the same step of the run.

Lemma A.3.3. For every receive action there is a corresponding send action. More for-

mally,

EVENT (R,X, (x), m, x) ⊃ ∃Y.EVENT (R, Y, 〈m〉, ∅, ∅).

Proof. This follows from the definition of the basic cord calculus reaction steps.

Lemma A.3.4. For any initial configuration C of protocol Q, and any run R, if agent

X̂ ∈ HONEST (C), then for any thread X performed by principal X̂ , R|X is a trace of a

single role ofQ executed by X .

Proof. This follows from the definition of initial configuration, which is constructed by

assigning roles to threads of honest principals.

Appendix B

Semantics of Protocol Logic

The formulas of the logic are interpreted over runs, which are finite sequences of reaction

steps from an initial configuration. An equivalent view, consistent with the execution model

used in defining Linear Temporal Logic (LTL) semantics, is to think of a run as a linear

sequence of states. Transition from one state to the next is effected by an action carried out

by some principal in some role. A formula is true in a run if it is true in the last state of that

run.

The main semantic relation, Q, R |= φ, may be read, “formula φ holds for run R of

protocolQ.” If Q is a protocol, then let Q̄ be the set of all initial configurations of protocol

Q, each including a possible intruder cord. Let Runs(Q̄) be the set of all runs of protocolQ

with intruder, each a sequence of reaction steps within a cord space. If φ has free variables,

then Q,R |= φ if we have Q,R |= σφ for all substitutions σ that eliminate all the free

variables in φ. For a set of formulas Γ, we say that Γ |= φ if Q, R |= Γ impliesQ, R |= φ.

We write Q |= φ if Q, R |= φ for all R ∈ Runs(Q̄).

Action Formulas:

• Q, R |= Send(A,m) if LAST (R,A, 〈m〉, ∅, ∅).

• Q, R |= Receive(A,m) if LAST (R,A, (x), m, x).

• Q, R |= New(A,m) if LAST (R,A, (νx), m, x).

144

145

• Q, R |= Decrypt(A, {|m|}K) if LAST (R,A, ({|m|}K/{|x|}K), m, x)

Note: Decrypt(A, n) is false if n 6= {|m|}K for some m and K.

• Q, R |= Verify(A, {|m|}K) if LAST (R,A, ({|m|}K/{|m|}K), ∅, ∅)

Note: Verify(A, n) is false if n 6= {|m|}K for some m and K.

Other Formulas:

• Q, R |= Has(A,m) if there exists an i such that Hasi(A,m) where Hasi is inductively

as follows:

(Has0(A,m) if ((m ∈ FV (R|A))

∨ EVENT (R,A, (νx), m, x)

∨ EVENT (R,A, (x), m, x)

and Hasi+1(A,m) if Hasi(A,m)∨ (Hasi(A,m
′)

∨ (Hasi(A,m
′) ∧ Hasi(A,m

′′)

∧ ((m = m′, m′′) ∨ (m = m′′, m′)))

∨(Hasi(A,m
′) ∧ Hasi(A,K)

∧m = {|m′|}K)

∨(Hasi(A, a) ∧ Hasi(A, g
b)

∧m = gab)

∨(Hasi(A, g
ab) ∧m = gba)

Intuitively, Has0 holds for terms that are known directly, either as a free variable of

the role, or as the direct result of receiving or generating the term. Hasi+1 holds for

terms that are known by applying i operations (decomposing via pattern matching,

composing via encryption or tupling, or by computing a Diffie-Hellman secret) to

terms known directly.

• Q, R |= Fresh(A,m) if Q, R |= (
�

New(A,m) ∨ (
�

New(A, n) ∧m = g(n))) ∧

¬(
�

Send(A,m′) ∧m ⊆ m′).

• Q, R |= Honest(Â) if Â ∈ HONEST (C) in initial configuration C for R and all

threads of Â are in a “pausing” state in R. More precisely, R|Â is an interleaving of

basing sequences of roles in Q.

146 APPENDIX B. SEMANTICS OF PROTOCOL LOGIC

• Q, R |= Contains(t1, t2) if t2 ⊆ t1.

• Q, R |= (φ1 ∧ φ2) if Q, R |= φ1 and Q, R |= φ2

• Q, R |= ¬φ if Q, R 6|= φ

• Q, R |= ∃x.φ if Q, R |= (d/x)φ, for some d, where (d/x)φ denotes the formula

obtained by substituting d for x in φ.

• Q, R |=
�
φ if Q, R′ |= φ, where R′ is a (not necessarily proper) prefix of R.

Intuitively, this formula means that in some state in the past, formula φ is true.

• Q, R |= � φ if Q, R′ |= φ, where R = R′e, for some event e. Intuitively, this

formula means that � φ is true in a state if φ is true in the previous state.

• Q, R |= Start(X) if R|X is empty. Intuitively this formula means that X didn’t

execute any actions in the past.

Modal Formulas:

• Q, R |= φ1 [P]A φ2 if R = R0R1R2, for some R0, R1 and R2, and either P does not

match R1|A or P matches R1|A and Q, R0 |= σφ1 impliesQ, R0R1 |= σφ2, where σ

is the substitution matching P to R1|A.

Appendix C

Soundness of Axioms and Proof Rules

In this section we prove the soundness of the axioms and proof rules used in the proof

system, hence proving Theorem 4.2.1. Since the logic and the proof system are an extension

of the earlier work [49, 50], here we only give brief and informal proofs for those axioms

that are same or similar to axioms in [50]. We omit proofs for standard axioms and rules

of temporal logic. Also, we show that the composition methodology is sound by proving

Lemmas 4.1.2 and 4.1.6.

C.1 Axioms for protocol actions

AA1 φ[a]X � a

Informally, this axiom says that if a is an action, and a a corresponding action formula,

when thread X executes a, in the resulting state
�

a holds. Let Q be a protocol, and let

R = R0R1R2 be a run such that R1|X matches a under substitution σ and Q, R0 |= σφ,

we need to prove that Q, R0R1 |=
�
σa. Since R1|X matches a under substitution σ, R1

has to contain action σa, and therefore, by the semantics of the temporal operator “
�

”,

it has to be that Q, R0R1 |=
�
σa. Now, by the definition of modal formulas we have

Q |= φ [a]X
�

a.

147

148 APPENDIX C. SOUNDNESS OF AXIOMS AND PROOF RULES

AA2 Fresh(X, t)[a]X � (a ∧ � Fresh(X, t))

Informally, this axiom says that if a term t is fresh in some state, then it remains fresh at

least until the corresponding thread executes an action. Let Q be a protocol, and let R =

R0R1R2 be a run such thatR1|X matches a under substitution σ andQ, R0 |= σFresh(X, t),

we need to prove that Q, R0R1 |= σ
�

(a ∧ � Fresh(X, t)). Since R1|X matches a under

substitution σ, R1 has to contain action σa. Let R′1 be a prefix of R1 containing all actions

preceding action σa. It holds trivially Q,R0R
′
1σa |= σa. On the other hand, Q,R0 |=

σFresh(X, t). Clearly, R1 does not contain any actions by thread X , and it follows from

semantics of the predicate “Fresh” that the validity of the formula Fresh(X, t) depends

only on actions done by X in the past. Therefore, Q,R0R1 |= σFresh(X, t), and hence

Q,R0R1σa |= � σFresh(X, t), by the semantics of the temporal operator “ � ”. Finally,

by the semantics of the temporal operator “
�

”, it has to be that Q, R0R1 |= σ
�

(a ∧

� Fresh(X, t)).

AN2 φ[(νn)]X Has(Y, n) ⊃ (Y = X)

Informally, this axiom says that fresh nonces are secret. If a process X generates a new

value m and takes no further actions, then X is the only thread who knows m. The sound-

ness of this axiom follows from the definition of the execution model and the semantics of

the predicate “Has”. For a detailed proof see [50].

AN3 φ[(νn)]X Fresh(X,n)

Informally, this axiom states that the newly created value is fresh exactly after creation.

The soundness of this axiom follows directly from the semantics of the predicate “Fresh”.

ARP � Receive(X, p(x))[(q(x)/q(t))]X � Receive(X, p(t))

Let Q be a protocol, and let R = R0R1R2 be a run such that R1|X matches (q(x)/q(t))

under substitution σ andQ, R0 |= σ
�

Receive(X, p(x)), we need to prove thatQ, R0R1 |=

σ
�

Receive(X, p(t)). Since R1|X matches (q(x)/q(t)) under substitution σ, and events of

R1 only contain ground terms, it has to be that σx is same as σt, and therefore Q, R0 |=

C.2. POSSESSION AXIOMS 149

�
Receive(X, p(t)). Clearly, formulas of the form

�
a remain valid as new actions are

executed, hence Q, R0R1 |= σ
�

Receive(X, p(t)).

C.2 Possession axioms

PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)

TUP Has(X, x) ∧ Has(X, y) ⊃ Has(X, (x, y))

ENC Has(X, x) ∧ Has(X,K) ⊃ Has(X, {|x|}K)

DEC Has(X, {|x|}K) ∧ Has(X,K) ⊃ Has(X, x)

This set of axioms describes ways in which a thread can accumulate knowledge. Informally,

these axioms say that if a thread has all the necessary parts to build some term then he has

the term itself. Also, a thread can decompose tuples and decrypt messages encrypted with a

known key. Soundness of these axioms follows directly from the semantics of the predicate

“Has”. Here, we prove the soundness of axiom ENC, proofs for other axioms are similar.

When Q,R 6|= Has(X, x) ∧ Has(X,K) then Q,R |= ENC holds trivially. Otherwise,

by the semantics of “∧”, Q,R |= Has(X, x) and Q,R |= Has(X,K) both hold. That

means, that Hasi(X, x) and Hasj(X,K) for some i and j. Assuming i ≥ j, we have

Hasi(X,K) and therefore Hasi+1(X, {|x|}K).

ORIG � New(X,n) ⊃ Has(X,n)

REC � Receive(X, x) ⊃ Has(X, x)

Informally, these axioms make connection between knowledge of a thread and the actions

executed by that thread in the past. A thread has all terms it creates or receives. Soundness

of these axioms follows directly from the semantics of the predicate “Has” and temporal

operator “
�

”.

150 APPENDIX C. SOUNDNESS OF AXIOMS AND PROOF RULES

C.3 Encryption and signature

SEC Honest(X̂) ∧ � Decrypt(Y, {|n|}X) ⊃ (Ŷ = X̂)

Informally, SEC says that if an agent X̂ is honest, and some thread Y executed by principal

Ŷ has decrypted a message {|n|}X (i.e. a message encrypted with X̂’s public key), then Ŷ

must be X̂ . In other words, if X̂ is honest, then only threads executed by X̂ can decrypt

messages encrypted X̂’s private key. For a detailed soundness proof of this axiom see [50].

VER Honest(X̂) ∧ � Verify(Y, {|n|}X) ∧ X̂ 6= Ŷ ⊃

∃X.∃m.(� Send(X,m) ∧ Contains(m, {|n|}X))

Informally, VER says that if an agent X̂ is honest, and some thread Y executed by prin-

cipal Ŷ has verified a signature {|n|}X (i.e. a message signed with X̂’s private key), then

X̂ must have send the signature out in some thread X , as a part of some message. In

other words, when X̂ is honest, he is the only one who can sign messages with his public

key. Therefore, every message signed by X̂ must have originated from some thread X

performed by principal X̂ .

LetQ be a protocol, and C be an initial configuration ofQ such that X̂ ∈ HONEST (C).

Suppose that R is a run of Q starting from C, such that Q, R |=
�

Verify(Y, {|n|}X).

By the definition of the execution model, when X̂ ∈ HONEST (C), only threads of

X̂ can construct signatures with X̂’s private key. Since, X̂ 6= Ŷ , it has to be that the

thread Y received term {|n|}X as a part of some message m′, i.e. there exists a term

m′ such that EVENT (R, Y, (x), m′, x) and {|n|}X ⊆ m′. By Lemma A.3.3 there is

a corresponding send action for every receive, hence there exists a thread Z such that

EVENT (R,Z, 〈m〉, ∅, ∅) is true. Therefore, there exists at least one action in the run

R where {|n|}X is sent as a part of some message. Let R′ be a shortest prefix of R

such that, for some thread Z and for some term m such that {|n|}X ⊆ m, it is true that

EVENT (R′, Z, 〈m〉, ∅, ∅). By Lemma A.3.1 {|n|}X has to be either received or gener-

ated by Z, since R′ is the shortest run in which {|n|}X is sent out as a part of some

message it has to be that the thread Z generated {|n|}X . By the definition of the ex-

ecution model, and honesty of X̂ it follows that Z is a thread of X̂ . Now, Q,R |=

C.4. UNIQUENESS OF NONCES 151

�
Send(Z,m) ∧ Contains(m, {|n|}Z)) holds by the semantics of temporal operators and

Lemma A.3.2.

C.4 Uniqueness of Nonces

N1 � New(X,n) ∧ � New(Y, n) ⊃ (X = Y)

Informally, this axiom says that nonces are unique across different threads. If two threads

X and Y have generated the same nonce n in the past, then it must be the case that X = Y .

The soundness of this axiom follows directly from the definition of the execution model

and the semantics of the predicate “New”.

N2 After(New(X,n1),New(X,n2)) ⊃ (n1 6= n2)

Informally, this axiom says that nonces are unique within the same thread. If some thread

X generated two nonces n1 and n2 by two distinct actions, then n1 and n2 must be different.

The soundness of this axiom follows directly from the definition of the execution model and

the semantics of the predicate “New”.

F1 � Fresh(X,n) ∧ � Fresh(Y, n) ⊃ (X = Y)

Informally, this axiom says that the freshness is local. If some nonce n is fresh in two

different threads X and Y then it must be that X = Y . The soundness of this axiom fol-

lows directly from the definition of the execution model and the semantics of the predicate

“Fresh”.

C.5 Subterm relationship

CON Contains((x, y), x)∧ Contains((x, y), y)

Informally, this axiom states that a tuple contains its parts. Informally, this axiom states that

a tuple contains its parts. The soundness of this axiom follows directly from the semantics

152 APPENDIX C. SOUNDNESS OF AXIOMS AND PROOF RULES

of the predicate “Contains”.

C.6 Modal axioms

P1 Persist(X, t)[a]XPersist(X, t) where Persist ∈ { � φ,Has}

Informally this axiom says that the for some formulas stay valid when an agent does ad-

ditional actions. Since the semantics of the predicate “Has” is based on the existence of a

certain event in a run, adding additional events to the run cannot make this predicates false.

Also, the fact that some formula was true in the past remains valid when add additional

actions to the run.

P3 HasAlone(X,n)[a]XHasAlone(X,n), where n 6⊆v a or a 6= 〈m〉

Informally this axiom says that a nonce n remains secret as long as it is not send out as a

part of some message m. The soundness of this axiom follows from the semantics of the

predicate “Has” and Lemmas A.3.1 and A.3.3.

F φ[〈m〉]X¬Fresh(X, t), where (t ⊆ m)

Informally, this axiom talks about loss of freshness. A value is not fresh anymore after it is

send out as a part of some message. The soundness of this axiom follows directly from the

semantics of the predicate “Fresh”.

C.7 Temporal ordering of actions

AF0 Start(X)[]X ¬ � a(X, t)

Informally, this axiom says that before a thread X executes any action, it is true that X did

not execute any actions in the past. The soundness of this axiom follows directly from the

semantics of the predicate “Start”, semantics of modal formulas, and the temporal operator

“
�

”.

C.8. AXIOMS FOR DIFFIE-HELLMAN KEY EXCHANGE 153

AF1 θ[a1 . . . an]X After(a1, a2) ∧ . . . ∧ After(an−1, an)

Informally, this axiom says that after an agent does some actions a1, . . . , an in that order,

it is true that After(ai, ai+1) for all i = 1, . . . , n − 1. The soundness of this axiom follows

directly from the definition of “After” and semantics of temporal operators.

AF2 (� b1(X, t1) ∧ � Fresh(X, t)) ∧ � b2(Y, t2) ⊃

After(b1(X, t1), b2(Y, t2)),where t ⊆ t2 and X 6= Y

Informally, this axiom says that the all actions a involving the term t which was fresh at

some point, must have happened after the first time that t was send out. The soundness

of this axioms follows from the semantics of the predicate “Fresh”, semantics of temporal

operators and Lemmas A.3.1 and A.3.3.

C.8 Axioms for Diffie-Hellman key exchange

Computes(X, gab) ≡ ((Has(X, a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

DH1 Computes(X, gab) ⊃ Has(X, gab)

Informally, this axiom says that if some thread has all necessary information to compute

the Diffie-Hellman secret, then he also has the Diffie-Hellman secret itself. The soundness

of this axiom follows directly from the semantics of the predicate “Has”.

DH2 Has(X, gab) ⊃ (Computes(X, gab)

∨ ∃m.(� Receive(X,m) ∧ Contains(m, gab)))

Informally, this axiom says that the only way to have a Diffie-Hellman secret is to compute

it from one exponent and one exponential or receive it as a part of some message. To prove

the axiom we have to check all the cases in the semantics of the predicate “Has”.

154 APPENDIX C. SOUNDNESS OF AXIOMS AND PROOF RULES

DH3 (� Receive(X,m) ∧ Contains(m, gab)) ⊃

∃Y,m′.(Computes(Y, gab)∧ � Send(Y,m′)∧Contains(m′, gab))

Informally, this axiom says that if someone receives a Diffie-Hellman shared secret then

there must be some thread that send it and computed it himself. Let R be a run in which

X receives a message m containing gab at some point. By Lemma A.3.3, that means that

in the run R there exists someone who send a message m containing gab. Let R′ be a

shortest prefix of R in which some agent Y sends some message m′ containing gab at some

point. Since R′ is a shortest such prefix, that means that Y could not receive a message m′′

containing gab. By axiom DH2 that means that Y must have computed gab himself.

DH4 Fresh(X, a) ⊃ Fresh(X, ga)

Informally, this axiom states that a Diffie-Hellman exponential is fresh as long as the ex-

ponent is fresh. The soundness of this axiom follows directly from the semantics of the

predicate “Fresh”.

C.9 Generic rules
θ[P]Xφ θ[P]Xψ

G1

θ[P]Xφ ∧ ψ

θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′
G2

θ′[P]Xφ
′

φ
G3

θ[P]Xφ

G1 follows from the semantics of “∧” and “θ[P]Xφ”. Let R = R0R1R2. If R1 does not

match P |X or Q,R0 6|= θ then trivially Q,R |= θ[P]Xφ ∧ ψ. Otherwise, it has to be that

Q,R0R1 |= φ and Q,R0R1 |= ψ, and Q,R |= θ[P]Xφ ∧ ψ follows from the semantics of

“∧”. Validity of axiom G2 can be verified similarly. Axiom G3 is trivially valid because

if φ is true after any run, then φ is true after a specific run that contains actions P .

C.10 Sequencing rule

φ1[P]Aφ2 φ2[P
′]Aφ3

S1

φ1[PP
′]Aφ3

C.11. THE HONESTY RULE 155

Sequencing rule S1 gives us a way of sequentially composing two cords P and P ′ when

post-condition of P , matches the pre-condition or P ′. Assume that Q is a protocol and R

is a run of Q such that Q, R |= φ1[P]Aφ2 and Q, R |= φ2[P
′]Aφ3. We need to prove that

Q, R |= φ1[PP
′]Aφ3. Let R = R0R1R2, assume that R1|A matches PP ′ under substitution

σ, and Q,R0 |= σφ1. Run R can be written as R = R0R
′
1R
′′
1R2 where R′1|A matches

P under σ and R′′1|A matches P ′ under σ. It follows that Q,R0R
′
1 |= σφ2 and therefore

Q, R0R
′
1R
′′
1 |= σφ3.

C.11 The Honesty rule

Start(X)[]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P]X φ
HON

Honest(X̂) ⊃ φ

no free variable in φ

except X bound in

[P]X

Assume that Q is a protocol and R is a run of Q such that Q, R |= Start(X)[]Xφ and

Q, R |= φ [P]X φ for all roles ρ ∈ Q and for all basic sequences P ∈ BS(ρ). We must

show that Q, R |= Honest(X̂) ⊃ φ. Assume Q, R |= Honest(X̂). Then by the semantics

of predicate “Honest” and Lemma A.3.4, it has to be that R|X is a trace of a role of Q

carried out by X and, moreover, thread X has to be in a pausing state at the end of R.

Therefore a R|X is a concatenation of basic sequences of Q. Now,Q, R |= φ follows from

the soundness of sequencing rule S1.

C.12 Composition theorems

Proof of Lemma 4.1.2

Suppose that the formula Honest(X̂) ⊃ φ can proved in bothQ1 andQ2 using the honesty

rule. By the definition of the honesty rule, it has to be that ` Start(X)[]Xφ and ∀ρ ∈

Q1 ∪ Q2.∀PεBS(ρ). ` φ [P]X φ. Every basic sequence P of a role in Q1 | Q2 is a basic

sequence of a role in Q1, or a basic sequence of a role in Q2. It follows that ` φ [P]X φ

and, therefore, by the application of the honesty rule, `Q1|Q2
Honest(X̂) ⊃ φ.

156 APPENDIX C. SOUNDNESS OF AXIOMS AND PROOF RULES

Proof of Lemma 4.1.6

Suppose that the formula Honest(X̂) ⊃ φ can proved in bothQ1 andQ2 using the honesty

rule. By the definition of the honesty rule, it has to be that Start(X) ` []Xφ and ∀ρ ∈ Q1 ∪

Q2.∀PεBS(ρ). ` φ [P]X φ. Let Q be a protocol obtained by the sequential composition

ofQ1 andQ2. Every basic sequence P of a role inQ has to be a basic sequence of a role in

Q1, or a basic sequence of a role in Q2, or a concatenation of a basic sequence of a role in

Q1 and a basic sequence of a role inQ2. In the first two cases, ` φ [P]X φ holds trivially, in

the third case ` φ [P]X φ follows by one application of the sequencing rule S1. Therefore,

by the application of the honesty rule, `Q Honest(X̂) ⊃ φ.

