A Derivation System for Security Protocols and its Logical Formalization

Anupam Datta
John C. Mitchell

Ante Derek
Dusko Pavlovic

Stanford University
Kestrel Institute

CSFW July 1, 2003
Contributions

- Protocol derivation
 - Build security protocols by combining parts from standard sub-protocols.

- Proof of correctness
 - Prove protocols correct using logic that follows steps of derivation.
Outline

- Derivation System
 - Motivating examples
 - Main concepts
 - Benefits

- Compositional Logic
 - Main idea
 - Syntax, semantics and proof system
 - Formalizing Composition

- Conclusions and Future Work
Protocol Derivation System
Example

- Construct protocol with properties:
 - Shared secret
 - Authenticated
 - Identity Protection
 - DoS Protection

- Design requirements for **IKE, JFK, IKEv2** (IPSec key exchange protocol)
Component 1

- Diffie-Hellman
 \[\begin{align*}
 A & \rightarrow B: \ g^a \\
 B & \rightarrow A: \ g^b
 \end{align*} \]

- Shared secret (with someone)
 - A deduces:
 \[\text{Knows}(Y, g^{ab}) \Rightarrow (Y = A) \lor \text{Knows}(Y, b) \]

- Authenticated
- Identity Protection
- DoS Protection
Component 2

- **Challenge Response:**

 $A \rightarrow B: \text{m, A}$
 $B \rightarrow A: \text{n, sig}_B \{\text{m, n, A}\}$
 $A \rightarrow B: \text{sig}_A \{\text{m, n, B}\}$

- Shared secret (with someone)
- **Authenticated**
 - A deduces: Received (B, msg1) \& Sent (B, msg2)
- Identity Protection
- DoS Protection
Composition

- ISO 9798-3 protocol:
 \[
 \begin{align*}
 A &\rightarrow B: \ g^a, A \\
 B &\rightarrow A: \ g^b, \text{sig}_B \{g^a, g^b, A\} \\
 A &\rightarrow B: \ \text{sig}_A \{g^a, g^b, B\}
 \end{align*}
 \]

- Shared secret: \(g^{ab}\)
- Authenticated
- Identity Protection
- DoS Protection
Refinement

- Encrypt signatures:

 $A \rightarrow B: g^a, A$

 $B \rightarrow A: g^b, E_K \{\text{sig}_B \{g^a, g^b, A\}\}$

 $A \rightarrow B: E_K \{\text{sig}_A \{g^a, g^b, B\}\}$

- Shared secret: g^{ab}
- Authenticated
- Identity Protection
- DoS Protection
Transformation

- Use cookie: JFK core protocol
 - $A \rightarrow B$: g^a, A
 - $B \rightarrow A$: g^b, hash$_{KB}$ {g^b, g^a}
 - $A \rightarrow B$: g^a, g^b, hash$_{KB}$ {g^b, g^a}
 - E_K {sig_A {g^a, g^b, B}}
 - $B \rightarrow A$: g^b, E_K {sig_B {g^a, g^b, A}}

- Shared secret: g^{ab}
- Authenticated
- Identity Protection
- DoS Protection
Derivation Framework

- Protocols are constructed from:
 - components

 by applying a series of:
 - composition, refinement and transformation operations.

- Properties accumulate as a derivation proceeds.

- Examples in paper:
 - STS, ISO-9798-3, JFKi, JFKr, IKE
STS Family Derivation

Properties:
- Certificates from CA
- Shared secret: g^{ab}
- Identity protection
- DoS protection
- Reverse ID protection
Benefits and Directions

- Complex protocols are easier to understand and analyze.
- Protocols can be organized in a taxonomy.
 - e.g., STS family, Needham-Schroeder family.
- Protocol synthesis.
Compositional Logic
Protocol Logic: Main idea

- Alice’s information
 - Protocol
 - Private data
 - Sends and receives

Private Data

Protocol

Honest Principals, Attacker

Send

Receive
Example: Challenge-Response

Alice reasons: if Bob is honest, then:
- only Bob can generate his signature. [protocol independent]
- if Bob generates a signature of the form \(\text{sig}_B \{m, n, A\} \),
 - he sends it as part of msg 2 of the protocol and
 - he must have received msg1 from Alice. [protocol specific]

Alice deduces: Received \((B, \text{msg1})\) \& Sent \((B, \text{msg2})\)
Execution Model

- **Protocol**
 - “Program” for each protocol role

- **Initial configuration**
 - Set of principals and key
 - Assignment of ≥ 1 role to each principal

- **Run**

![Diagram showing the execution model with nodes A, B, and C, and arrows indicating interactions such as $\nu X \langle \{X\}_B \rangle$, $\nu Z \langle \{Z\}_B \rangle$]
Formulas true at a position in run

- **Action formulas**
 \[a ::= \text{Send}(P,m) | \text{Receive}(P,m) | \text{New}(P,t) \]
 \[\quad | \text{Decrypt}(P,t) | \text{Verify}(P,t) \]

- **Formulas**
 \[\phi ::= a | \text{Has}(P,t) | \text{Fresh}(P,t) | \text{Honest}(N) \]
 \[\quad | \text{Contains}(t_1, t_2) | \neg \phi | \phi_1 \land \phi_2 | \exists x \phi \]
 \[\quad | \circ \phi | \Diamond \phi \]

- **Example**
 \[\text{After}(a,b) = \Diamond(b \land \circ \Diamond a) \]
Modal Formulas

- After actions, postcondition
 \[[\text{actions}]_P \varphi \]
 where \(P = \langle \text{princ}, \text{role id} \rangle \)

- Before/after assertions
 \[\varphi \ [\text{actions}]_P \psi \]

- Composition rule
 \[
 \varphi [S]_P \psi \quad \psi [T]_P \theta
 \]
 \[\varphi [ST]_P \theta \]

Note: same \(P \) in all formulas
Diffie-Hellman: Property

- Formula
 - \([\text{new } a]_A \text{Fresh}(A, g^a)\)

- Explanation
 - Modal form: \([\text{actions}]_P \varphi\)
 - Actions: \([\text{new } a]_A\)
 - Postcondition: \(\text{Fresh}(A, g^a)\)
Challenge Response: Property

- Modal form: $\varphi \ [\text{actions}] P \psi$
 - precondition: $\text{Fresh}(A,m)$
 - actions: [Initiator role actions] A
 - postcondition:

 $\text{Honest}(B) \models \text{ActionsInOrder(}$

 $\text{send}(A, \{A,B,m\}),$

 $\text{receive}(B, \{A,B,m\}),$

 $\text{send}(B, \{B,A,\{n, \text{sig}_B \{m, n, A\}\}\}),$

 $\text{receive}(A, \{B,A,\{n, \text{sig}_B \{m, n, A\}\}\})$

)
Composition: DH + CR = ISO-9798-3

- DH postcondition matches CR precondition
- Combination:
 - Substitute g^a for m in CR to obtain ISO.
 - Apply composition rule, persistence.
 - ISO initiator role inherits CR authentication.
- DH secrecy is also preserved
 - Proved using another application of composition rule.
Critical issues

- Reasoning about honest principals
 - Invariance rule, called “honesty rule”
- Preservation of invariants under composition
 - If we prove $\text{Honest}(X) \supset \varphi$ for protocol 1 and compose with protocol 2, is formula still true?
Honesty Rule

- **Definition**
 - A basic sequence of actions begins with receive, ends before next receive

- **Rule**
 \[
 \text{For all } B \in \text{BasicSeq}(Q). \quad \varphi \ [B]_X \varphi \\
 Q \triangleright \text{Honest}(X) \supset \varphi
 \]

- **Example**
 \[
 \text{CR } \triangleright \text{Honest}(X) \supset \\
 (\text{Sent}(X, m_2) \supset \text{Recd}(X, m_1))
 \]
Combining protocols

\[\Gamma \]

\[\text{DH} \uparrow \text{Honest(X)} \supset \ldots \]

\[\Gamma \vdash \text{Secrecy} \]

\[\Gamma \cup \Gamma' \vdash \text{Secrecy} \]

\[\Gamma \cup \Gamma' \vdash \text{Secrecy} \land \text{Authentication} \]

\[\text{DH} \bullet \text{CR} \uparrow \Gamma \cup \Gamma' \]

\[\parallel \]

\[\text{ISO} \uparrow \text{Secrecy} \land \text{Authentication} \]

\[\Gamma' \]

\[\text{CR} \uparrow \text{Honest(X)} \supset \ldots \]

\[\Gamma' \vdash \text{Authentication} \]

\[\Gamma' \cup \Gamma' \vdash \text{Authentication} \]
Composition Rules

- Prove assertions from invariants
 \[\Gamma \vdash \varphi […]_P \psi \]

- Invariant weakening rule
 \[\frac{\Gamma \vdash \varphi […]_P \psi}{\Gamma \cup \Gamma' \vdash \varphi […]_P \psi} \]
 If combining protocols, extend assertions to combined invariants

- Prove invariants from protocol
 \[Q \triangleright \Gamma \quad Q' \triangleright \Gamma \]
 \[Q \cdot Q' \triangleright \Gamma \]
 Use honesty (invariant) rule to show that both protocols preserve assumed invariants
Conclusions and Future Work
Conclusions

- **Protocol Derivation System:**
 - Systematizes the practice of building protocols from standard sub-protocols. Useful for:
 - protocol analysis and understanding.
 - organizing related protocols in taxonomies.
 - protocol synthesis.

- **Protocol Logic:**
 - Correctness proofs follow derivation steps.
 - Rigorous treatment of protocol composition.
Future Work

■ Derivation system:
 ■ taxonomies: STS, Needham-Schroeder family.
 ■ explore possibility of protocol synthesis.
 ■ can proofs in other formal systems be guided by derivations?

■ Protocol Logic:
 ■ Formalize refinements and transformations.
 ■ Automate proofs.
Questions?