Gradient Masking in Machine Learning

Nicolas Papernot
Pennsylvania State University

ARO Workshop on Adversarial Machine Learning, Stanford
September 2017
Thank you to our collaborators

Pieter Abbeel (Berkeley)
Michael Backes (CISPA)
Dan Boneh (Stanford)
Z. Berkay Celik (Penn State)
Yan Duan
Ian Goodfellow (Google)
Matt Fredrikson (CMU)
Kathrin Grosse (CISPA)
Sandy Huang (Berkeley)
Somesh Jha (U of Wisconsin)
Alexey Kurakin (Google)
Praveen Manoharan (CISPA)
Patrick McDaniel (Penn State)
Arunesh Sinha (U of Michigan)
Ananthram Swami (US ARL)
Florian Tramèr (Stanford)
Michael Wellman (U of Michigan)
Gradient Masking
Training

$$\text{loss}(x, y)$$

Small when prediction is correct on legitimate input
Adversarial training

\[
\text{loss}(x, y) + \text{loss}(x + \epsilon \cdot \text{sign} (\text{grad}), y)
\]

Small when prediction is correct on legitimate input

Small when prediction is correct on adversarial input
Gradient masking in adversarially trained models

Tramèr et al. *Ensemble Adversarial Training: Attacks and Defenses*
Illustration adapted from slides by Florian Tramèr
Gradient masking in adversarially trained models

Adversarial example

Non-adversarial example

Direction of another model’s gradient

Direction of the adversarially trained model’s gradient

Tramèr et al. *Ensemble Adversarial Training: Attacks and Defenses*

Illustration adapted from slides by Florian Tramèr
Gradient masking in adversarially trained models

Tramèr et al. *Ensemble Adversarial Training: Attacks and Defenses*
Illustration adapted from slides by Florian Tramèr
Evading gradient masking (1)

Threat model: white-box adversary

Attack:

1. Random step (of norm alpha)
2. FGSM step (of norm eps - alpha)

Tramèr et al. *Ensemble Adversarial Training: Attacks and Defenses*

Illustration adapted from slides by Florian Tramèr
Evading gradient masking (2)

Threat model: black-box attack

Attack:

1. Learn substitute for defended model
2. Find adversarial direction using substitute
Attacking black-box models

(1) The adversary queries the remote ML system with synthetic inputs to learn a local substitute.

Papernot et al. *Practical Black-box Attacks Against Machine Learning*
(2) The adversary uses the local substitute to craft adversarial examples.
Adversarial example transferability

Papernot et al. *Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples*
Large adversarial subspaces enable transferability

On average: 44 orthogonal directions -> 25 transfer
Adversarial training

\[\text{loss}(x, y) + \text{loss}(x + \epsilon \cdot \text{sign(grad)}, y) \]

Small when prediction is correct on legitimate input

Small when prediction is correct on adversarial input

Gradient is not adversarial
Ensemble Adversarial Training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training

\[\text{loss}(x, y) + \text{loss}(x + \epsilon \cdot \text{sign(grad)}, y) \]
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Ensemble adversarial training

Intuition: present adversarial gradients from multiple models during training
Experimental results on MNIST
Experimental results on ImageNet
Reproducible Adversarial ML research with CleverHans
CleverHans library guiding principles

1. Benchmark reproducibility

2. Can be used with any TensorFlow model

3. Always include state-of-the-art attacks and defenses
Growing community

1.1K+ stars
290+ forks
35 contributors
Adversarial examples represent worst-case distribution drifts.

[DDS04] Dalvi et al. Adversarial Classification (KDD)
Adversarial examples are a *tangible* instance of hypothetical AI safety problems.
Thank you for listening! Get involved at:

github.com/tensorflow/cleverhans