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An overview of a field

• This presentation summarizes the work of many 
people, not just my own / my collaborators 

• Please check out the slides and view this link of  
extensive references 

• The presentation focuses on the concepts, not the 
history or the inventors

https://docs.google.com/document/d/1VOrunj-_H6NlgpoMM1hTlNazJUH3mssEpEn13-OuAcc/edit
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Adversarial Machine Learning
Traditional ML: 

optimization
Adversarial ML: 

game theory

Minimum Equilibrium
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Adversarial Situations in 
Machine Learning

Board game 
player 1

Board game 
player 2

Samuel’s checkers, 
AlphaGo

ML algorithm
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Adversarial Situations in 
Machine Learning

Recognize 
real data

Generate fake 
data

GANs

ML algorithm
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Adversarial Situations in 
Machine Learning

E-mail 
service Spammer

ML algorithm

Spam detector
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Machine learning pipeline

X ✓
x

ŷ

Training data
Learning algorithm

Learned parameters

Test input

Test output
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Privacy of training data

X ✓ X̂
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Defining (ε, δ)-Differential Privacy 

(Abadi 2017)
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Private Aggregation of Teacher Ensembles

(Papernot et al 2016)
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Training Set Poisoning

x

X ✓ ŷ
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ImageNet poisoning

(Koh and Liang 2017)
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Adversarial examples

X ✓

x

ŷ
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Model theft

X ✓
x

ŷ
✓̂
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Model theft++

X ✓
x

ŷ
✓̂
X̂
x
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Advanced models can infer 
private information

(Youyou et al 2014)
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Automated Crowdturfing
Temperature Generated Review Text

0.1
I love this place! I have been here a few times and have never been disappointed. The service
is always great and the food is always great. The sta� is always friendly and the food is always
great. I will de�nitely be back and try some of their other food and service.

0.5 I love this place. I have been going here for years and it is a great place to hang out with friends
and family. I love the food and service. I have never had a bad experience when I am there.

0.7
My family and I are huge fans of this place. The sta� is super nice and the food is great. The
chicken is very good and the garlic sauce is perfect. Ice cream topped with fruit is delicious
too. Highly recommended!

1.0 I had the grilled veggie burger with fries!!!! Ohhhh and taste. Omgggg! Very �avorful! It was
so delicious that I didn’t spell it!!

Table 2: Example of the generated �ve-star fake reviews targeting at a bu�et restaurant in NYC. More examples of generated
reviews are included in the Appendix B.
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Figure 5: Performance of linguistic classi�er on detecting
machine-generated reviews.
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Figure 6: Plagiarism similarity score. Each point shows me-
dian, 25th and 75th percentile of the score distribution.
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(a) Average word length (structural feature)
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(b) Ratio of verb usage (syntactic feature)
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(c) Ratio of positive word usage (semantic feature)

Figure 7: Change of linguistic feature values when temperature varies.

and would pass the linguistic �lter. Standard solution is to rely
on plagiarism checkers to identify the duplicate or near-duplicate
reviews. Given that the RNN model is trained to generate text
similar to the training set, we examine if the machine-generated
reviews are duplicates or near-duplicates of reviews in the training
set.

To conduct a plagiarism check, we assume that the service
provider has access to a database of reviews used for training the
RNN. Next, given a machine-generated review, the service provider

runs a plagiarism check by comparing it with reviews in the data-
base. This is a best case scenario for a plagiarism test, and helps us
understand its potential to detect generated reviews.

We use Winnowing [63], a widely used method to identify dupli-
cate or near-duplicate text. For a suspicious text, Winnowing �rst
generates a set of �ngerprints by applying a hashing function to
a set of substrings in the text, and then compares the �ngerprints
between the suspicious text and the text in database. Similarity be-
tween two reviews is computed using Jaccard Similarity [5] of their
�ngerprints generated from Winnowing. The plagiarism similarity

(Yao et al 2017)
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Fake News

www.futureoffakenews.com

http://www.futureoffakenews.com
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Machine learning for password 
guessing

(Melicher et al 2016)
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AI for geopolitics?
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Deep Dive on Adversarial 
Examples
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...solving CAPTCHAS and 
reading addresses...

...recognizing objects 
and faces….

(Szegedy et al, 2014)

(Goodfellow et al, 2013)

(Taigmen et al, 2013)

(Goodfellow et al, 2013)

and other tasks...

Since 2013, deep neural networks have 
matched human performance at...
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Adversarial Examples

Timeline: 
“Adversarial Classification” Dalvi et al 2004: fool spam filter 
“Evasion Attacks Against Machine Learning at Test Time” 
Biggio 2013: fool neural nets 
Szegedy et al 2013: fool ImageNet classifiers imperceptibly 
Goodfellow et al 2014: cheap, closed form attack
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Turning Objects into “Airplanes”
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Attacking a Linear Model
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Adversarial Examples from Overfitting

x

x

x

O
O
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Adversarial Examples from 
Excessive Linearity

x
x

x
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O
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Modern deep nets are very 
piecewise linear

Rectified linear unit 

Carefully tuned sigmoid

Maxout 

LSTM

Google Proprietary

Modern deep nets are very (piecewise) linear

Rectified linear unit

Carefully tuned sigmoid

Maxout

LSTM
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Nearly Linear Responses in Practice
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Small inter-class distances
Clean 
example

Perturbation Corrupted 
example

All three perturbations have L2 norm 3.96
This is actually small. We typically use 7!

Perturbation changes the true 
class

Random perturbation does not 
change the class

Perturbation changes the input 
to “rubbish class”
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The Fast Gradient Sign Method
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Maps of Adversarial and Random 
Cross-Sections

(collaboration with David Warde-Farley and Nicolas Papernot)
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Maps of Random Cross-Sections
Adversarial examples 

are not noise

(collaboration with David Warde-Farley and Nicolas Papernot)
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Estimating the Subspace 
Dimensionality

(Tramèr et al, 2017)
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Wrong almost everywhere
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Adversarial Examples for RL

(Huang et al., 2017)

https://www.youtube.com/watch?v=r2jm0nRJZdI
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RBFs behave more intuitively
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Cross-model, cross-dataset 
generalization
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Cross-technique transferability

(Papernot 2016)
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Train your 
own model

Transferability Attack
Target model with 
unknown weights, 
machine learning 

algorithm, training 
set; maybe non-
differentiable

Substitute model 
mimicking target 

model with known, 
differentiable function

Adversarial 
examples

Adversarial crafting 
against substitute

Deploy adversarial 
examples against the 
target; transferability 

property results in them 
succeeding



(Goodfellow 2017)

Enhancing Transfer With 
Ensembles

(Liu et al, 2016)
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Adversarial Examples in the 
Human Brain

(Pinna and Gregory, 2002)

These are 
concentric 

circles, 
not 

intertwined 
spirals. 
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Adversarial Examples in the 
Physical World

(Kurakin et al, 2016)
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Training on Adversarial Examples
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Success on MNIST?
• Open challenge to break model trained on 

adversarial perturbations initialized with noise 

• Even strong, iterative white-box attacks can’t get 
more than 12% error so far

(Madry et al 2017)
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Verification

• Given a seemingly robust model, can we prove that 
no adversarial examples exist near a given point? 

• Yes, but hard to scale to large models (Huang et al 
2016, Katz et al 2017) 

• What about adversarial near test points that we 
don’t know to examine ahead of time?
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Clever Hans
(“Clever Hans, 

Clever 
Algorithms,” 
Bob Sturm)
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Get involved!
https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack

Best defense so far on ImageNet: 
Ensemble adversarial training, 

Tramèr et al 2017

https://github.com/
tensorflow/cleverhans

https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack

