
Adversarial	Robustness	
via	Optimization	Lens

Aleksander Mądry

Aleksandar
Makelov

Ludwig
Schmidt

Dimitris
Tsipras

Adrian	
Vladu

madry-lab.mlJoint	work	with

Crucial	question:	
Can	you	really	trust	your	deep	learning	model?

Why	am	I	(are	we?)	here?

Goal:	Make	deep	learning	safe	and	reliable

Focus	today:	Adversarial	Examples	[Szegedy et	al.	‘14]
[Goodfellow et	al.	’15]

This	is	not	only	about	pandas…

[Sharif	et	al.	’16] [Kurakin et	al.	’17]

[Huang	et	al.	’17]	[Behzadan-Munir ‘17]

…or	only	
about	security

Our	models	do	not generalize	as	reliably	as	we	thought

[Kos	et	al.	’17]
Receiver

z

SenderAttacker

fenc fdec

Figure 1: Depiction of the attack scenario. The VAE is used as a compression scheme to transmit
a latent representation of the image from the sender (left) to the receiver (right). The attacker con-
vinces the sender to compress a particular image into its latent vector, which is sent to the receiver,
where the decoder reconstructs the latent vector into some other image chosen by the attacker.

blurry. While they do not explain the exact experimental setting, the attack sounds similar to our
LVAE attack, which we find very successful. Also, in their paper the authors do not consider the
more advanced VAE-GAN models and more complex datasets like CelebA.

2.2 BACKGROUND ON VAES AND VAE-GANS

The general architecture of a variational autoencoder consists of three components, as shown in Fig-
ure 8. The encoder fenc(x) is a neural network mapping a high-dimensional input representation
x into a lower-dimensional (compressed) latent representation z. All possible values of z form a
latent space. Similar values in the latent space should produce similar outputs from the decoder in
a well-trained VAE. And finally, the decoder/generator fdec(z), which is a neural network map-
ping the compressed latent representation back to a high-dimensional output ˆx. Composing these
networks allows basic input reconstruction ˆ

x = fdec(fenc(x)). This composed architecture is used
during training to backpropagate errors from the loss function.

The variational autoencoder’s loss function LVAE enables the network to learn a latent representation
that approximates the intractable posterior distribution p(z|x):

LVAE = �DKL[q(z|x)||p(z)] + E
q

[log p(x|z)]. (1)

q(z|x) is the learned approximation of the posterior distribution p(z|x). p(z) is the prior distribution
of the latent representation z. DKL denotes the Kullback–Leibler divergence. E

q

[log p(x|z)] is
the variational lower bound, which in the case of input reconstruction is the cross-entropy H[x, ˆx]
between the inputs x and their reconstructions ˆ

x. In order to generate ˆ

x the VAE needs to sample
q(z|x) and then compute fdec(z).

For the VAE to be fully differentiable while sampling from q(z|x), the reparametrization trick
(Kingma & Welling, 2013) extracts the random sampling step from the network and turns it into
an input, ". VAEs are often parameterized with Gaussian distributions. In this case, fenc(x) outputs
the distribution parameters µ and �2. That distribution is then sampled by computing z = µ+"

p
�2

where " ⇠ N(0, 1) is the input random sample, which does not depend on any parameters of fenc,
and thus does not impact differentiation of the network.

The VAE-GAN architecture of Larsen et al. (2015) has the same fenc and fdec pair as in the VAE.
It also adds a discriminator fdisc that is used during training, as in standard generative adversarial
networks (Goodfellow et al., 2014). The loss function of fdec uses the disciminator loss instead of
cross-entropy for estimating the reconstruction error.

3 PROBLEM DEFINITION

We provide a motivating attack scenario for adversaries against generative models, as well as a
formal definition of an adversary in the generative setting.

3.1 MOTIVATING ATTACK SCENARIO

To motivate the attacks presented below, we describe the attack scenario depicted in Figure 1. In
this scenario, there are two parties, the sender and the receiver, who wish to share images with each
other over a computer network. In order to conserve bandwidth, they share a VAE trained on the
input distribution of interest, which will allow them to send only latent vectors z.

3

Focus	so	far:
→	Exploration	of	the	structure	of	adversarial	examples
→	Mostly	interest	in	their	construction,	i.e.,	attacks
→	Proposed	defense	mechanism	tend	to	be	bypassed	by	

new,	more	sophisticated	attacks

→	No	good	understanding	yet	of	the	extent	to	which	one	
can or	cannot	be	resistant	to	adversarial	examples

“Arms	race”	between	attacks	and	defenses

JSMA			→			Defensive	Distillation			→			Tuned	JSMA
[Papernot et	al.	’15],	[Papernot et	al.	‘16],	[Carlini et	al.	‘17]

FGSM	→		Feature	Squeezing,	Ensembles	→		Tuned	Lagrange
[Goodfellow et	al.	‘15],	[Abbasi et	al.	‘17],	[Xu	et	al.	‘17];	[He	et	al.	‘17]

Our	work:	Attempt	a	principled	(re)look	at	adv.	robustness

Three	principles	underlying	our	approach:
→	Be	precise	about	your	threat	model,	i.e.,	what	you	want

to	be	secure	against	(and	what	is	ok	to	be	vulnerable	to)
→	Use	(robust)	optimization	as	a	lens	on	adv.	robustness
→	Let	the	intended	security	guarantees	be	the	driver	

of	the	design	of	the	corresponding	defense	mechanism

Resulting	framework:
→	Enables	us	to	train	

reliably* robust	models
→	Provides	a	perspective	on	adversarial	robustness	

(that	also	unifies	and	explains	much	of	previous	findings)

minθ ED	[loss(θ,	x,	y)]	

Optimization-based	View	on	Adversarial	Robustness

minθ ED	[maxδ∊∆ loss(θ,	x+δ,	y)]	

∆ = set	of	“allowed”	adversarial	perturbations	(attack	model)
Here:	Focus	on	images	&	∆ = each	pixel	changed	by	≤	ε

Optimization-based	View	on	Adversarial	Robustness

Equivalently:																	minθ ED	[𝞿(θ,x,y)]	

𝞿(θ,x,y)	=	maxδ∊∆ loss(θ,	x+δ,	y)	 (“adversarial”	loss)

Note:	If	we	find	θ that	makes	the	objective	small
⇒	security	against	any attack	in	∆

So,	now	it	is	”just”	about	optimization

(Also	see	[Huang	et	al.	‘15]	and	[Shaham et	al.	‘15])

𝞿(θ,x,y)	=	maxδ∊∆ loss(θ,	x+δ,	y)	 (“adversarial”	loss)

Evaluation	of		Adversarial	Loss	

Observe: Evaluation	of	adversarial	loss
⟺	finding	best	attack

minθ ED	[𝞿(θ,x,y)]	

What	is	the	“best”	way	to	evaluate	adv.	loss/attack?

→	Quality	of	evaluation	=	reliability	of	the	attacks
→	Most	prior	attacks	thus	correspond	to	evaluation	of	

this	adversarial	loss	(often	in	a	quite	ad-hoc	manner)

𝞿(θ,x,y)	=	maxδ∊∆ loss(θ,	x+δ,	y)	 (“adversarial”	loss)

Evaluation	of		Adversarial	Loss	

minθ ED	[𝞿(θ,x,y)]	

A	priori:	Evaluating𝞿(θ,x,y)	corresponds	to	maximizing	
a	non-concave	function	(loss)

Natural	(only?)	approach:	(Multi-step)	projected	gradient	
descent/ascent	(PGD)	with	random	restarts

What	is	the	best	we	can	do	here?	
(If	loss	has	no	special	structure)	

Indeed:	PGD	leads	to	strong	“first	order”	attacks But	why?

𝞿(θ,x,y)	=	maxδ∊∆ loss(θ,	x+δ,	y)	 (“adversarial”	loss)

Evaluation	of		Adversarial	Loss	

minθ ED	[𝞿(θ,x,y)]	

Observation:	Even	though	there	is	a	lot	of	distinct	local	
maxima	of𝞿(θ,x,y), their	values are	fairly	concentrated

This	suggests:	Maxima	we	identify	close	to	global	ones
⇒ they	give	good	descent	directions	(cf Danskin’s theorem)	

Solving	our	saddle	point	problem

Recall:	Evaluation	of	𝞿(θ,x,y)	⟺	Finding	best	attack

Consequently: Solving	our	saddle	point	problem
⟺	Performing	adversarial	training

Our	method	=	Best*	adversarial	training?	

Key	caveat:	”Reliability”	of	our	attacks	was	verified	
only from	the	“first	order”	perspective

⇒	Could	have	much	better	attacks/local	maxima	
we	can’t	easily	access	with	first	order	methods

“First	order”	security	model?

Solving	our	saddle	point	problem:	Results

Our	best	models:
→	MNIST	(ε=0.3):	Accuracy	89%	against	the	“best”	white	

box	attack	and	95%	against	black	box/transfer	attacks
→	CIFAR10	(ε=8):	Accuracy	46%	(white	box	attack)

and	64%	(black	box/transfer	attack)

Important:	Capacity	of	our	model	matters
Accuracy	and	loss	vs.

model	capacity	
(PGD	training	on	MNIST):

Need	enough	capacity	to	have	the	final value	of	
our	saddle	point	problem	be	small	enough	

Why?

Some	Take	Home	Messages
→	Opt.-based	perspective	enables	us	to	reason	about	adversarial	

robustness	guarantees in	a	precise	and	principled	manner

→	Reliable	optimization	and	enough	capacity	is	crucial
(Most	of	quirks	observed	in	past	work	seem	to	be	tied	to	lack	of	one	of	these)

Key	duality:	If	you	can	reliably attack	it,	you	can	also	reliably defend	

Attacks	⟺	Evaluation	of	adv.	loss
Adv.	training	⟺	Solving	saddle	point	problem	

Truly	adversarially	robust	ML	might	be	possible	after	all!

Moving	forward
→	Validate	further	the	predictions	of	our	framework
→	MNIST	results	pretty	satisfying	

but	CIFAR10,	although	promising,	still	needs	more	work
→	Different	data	sets?	Different/better	attack	models?	

Non-differentiable	attacks?
→	Faster	training	time/smaller	models?

Also:	MNIST/CIFAR10	black	box/transfer	security	challenge

→	Break	our	model,	because	we	couldn’t
→	Details:	

https://github.com/MadryProj/mnist_challenge
→	Aim	to	host	more	such	challenges	soon

(crucial	to	get	truly	reliable	ML	security)

Thank	you

PGD	=	a	universal	“first	order”	adversary?

Change	of	loss	in	the	direction	identified	by	different	attacks:

FGSM	(single	gradient)
PGD	(100	steps	with	η=0.3)
Transfer	FGSM
Transfer	PGD

“Obvious”	tantalizing	question:	
Why	deep	learning	works	(even	though	it	“should”	not)?

Can	we	make	deep	learning	safe	and	reliable?

Why	am	I	(are	we?)	here?

But:	Would	you	really	trust	your	deep	learning	model?

