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Why Prove Things?

Attackers often have more motivation /resources than defenders

Heuristic defenses: arms race between attack and defense

Proofs break the arms race, provide absolute security
e for a given threat model...



Example: Adversarial Test Images

“panda” “gibbon”

57.7% confidence 99.3% confidence



Example: Adversarial Test Images

“panda” “gibbon”

57.7% confidence 99.3% confidence

[Szegedy et al., 2014]: first discovers adversarial examples

[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure
[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail
[Madry et al., 2017]: a secure network, finally??
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[Szegedy et al., 2014]: first discovers adversarial examples

[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure
[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail
[Madry et al., 2017]: a secure network, finally??

1 proof = 3 years of research
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e Traditional software: designed to be secure
e ML systems: learned organically from data, no explicit design
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e Traditional software: designed to be secure
e ML systems: learned organically from data, no explicit design

Hard to analyze, limited levers

Other challenges:
e adversary has access to sensitive parts of system

e unclear what spec should be (car doesn't crash?)
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Test-time Attacks

Adversarial examples:

“panda” “gibbon”
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57.7% confidence 09.3% confidence

Can we prove no adversarial examples exist?




Formal Goal

- Goal

Given a classifier f : RY — {1,...,k}, and an input z, show
that there is no " with f(x) # f(2') and ||z — 2/|| <.

e Norm: ¢*°-norm: ||z| = max?zl |z

e Classifier: f is a neural network



[Katz, Barrett, Dill, Julian, Kochenderfer 2017]

Approach 1: Reluplex

Assume f is a ReLU network: layers (1), ... z(5) with
:UEZ—H) = max(az(-l) .z 0)

Want to bound maximum change in output z(%).

Can write as an integer-linear program (ILP):

y = max(x,0) <
r<y<zx+b-M,
0<y<(1-0) M,
be{0,1}

Check robustness on 300-node networks

e time ranges from 1s to 4h (median 3m-4m)



[Raghunathan, S., Liang]

Approach 2: Relax and Dualize

Still assume f is RelLU

Can write as a non-convex quadratic program instead.
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[Raghunathan, S., Liang]

Approach 2: Relax and Dualize

Still assume f is RelLU

Can write as a non-convex quadratic program instead.

Every quadratic program can be relaxed to a semi-definite program

Advantages:
e always polynomial-time
e duality: get differentiable upper bounds

e can train against upper bound to generate robust networks



Zero - one loss

Results

MNIST Dataset
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Zero - one loss
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Results

MNIST 1 vs 7
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What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs
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Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all
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Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all

Huge issue in practice...

Oy a4

How can we keep adversary from subverting the model?
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Formal Setting

Adversarial game:

e Start with clean dataset D, = {x1,...,z,}

e Adversary adds en bad points D,

e Learner trains model on D = D.UD,, outputs model 6 and incurs
loss L(6)

Learner’s goal: ensure L(f) is low no matter what adversary does

e under a priori assumptions,
e or for a specific dataset D...
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Formal Setting

Adversarial game:

e Start with clean dataset D, = {x1,...,z,}

e Adversary adds en bad points D,

e Learner trains model on D = D.UD,, outputs model 6 and incurs
loss L(6)

Learner’s goal: ensure L(f) is low no matter what adversary does

e under a priori assumptions,
e or for a specific dataset D...

In high dimensions, most algorithms fail!
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Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

[Charikar, S., Valiant 2017]
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[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

Growing literature: 154 papers since 2016 [DKKLMS16/17, LRV16,
SVC16, DKS16/17, CSV17, SCV17, L17, DBS17, KKP17, S17, MV17]
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What about certifying a specific algorithm on a specific data set?
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[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

def
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Certified Defenses for Data Poisoning
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training data
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[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Outlier removal

_;E’

Defender discards outliers
outside some feasible set F
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Certified Defenses for Data Poisoning

Clean
training data
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[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

Poisoned%%
o def

Op, = argming L(0; (D . UD,)NF) < training data
D,

What's the worst case
test loss over all
possible attacks?

Model
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Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximizeg , L(A) subject to § = argmin, > _zep,up, L0 2),
D, CF

16



Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximize; r, L(A) subject to § = argmin, > _zep,up, L0 2),
D, CF

(Very) NP-hard in general

16



Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximize; r, L(#) subject to # = argmin, erDcqu 0(0;x),
D, CF

(Very) NP-hard in general

Key insight: approximate test loss by train loss, can then upper bound
via a saddle point problem (tractable)

e automatically generates a nearly optimal attack
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Results

MNIST (1 vs. 7)
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Distance along orthonormal vector

Results

MNIST (1 vs. 7)
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Results

IMDB sentiment analysis
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What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs

18



Theano/Theano =~ ® Watch~ 512 *S

Code @ Issues 591 Pull requests 114 ||| Boards & Reports Projects 0 Wiki

Insidious random data/memory corruption bug causing
Incorrect computation and training divergence #4//0

(CAHLILNE xuancong84 opened this issue on Jul 20, 2016 - 17 comments

u xuancong84 commented on Jul 20, 2016 = edited g

It seems that sometimes by chance, Theano's (for all versions including bleeding-edge) internal memory
state can get corrupted silently, with all subsequent training/testing operations produces erroneous results
without throwing any exceptions/warnings. The error will accumulate until some point when the training
starts to always diverge. The problem can be solved by aborting the current process, reloading the last-
known good model and resuming training.
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Code @ Issues 591 1’1 Pull requests 114 ||| Boards & Reports I'l| Projects 0 Wiki

Insidious random data/memory corruption bug causing
Incorrect computation and training divergence #4//0

(CAHLILNE xuancong84 opened this issue on Jul 20, 2016 - 17 comments

u xuancong84 commented on Jul 20, 2016 = edited F @

It seems that sometimes by chance, Theano's (for all versions including bleeding-edge) internal memory
state can get corrupted silently, with all subsequent training/testing operations produces erroneous results
without throwing any exceptions/warnings. The error will accumulate until some point when the training
starts to always diverge. The problem can be solved by aborting the current process, reloading the last-
known good model and resuming training.

@ lamblin closed this 24 days ago

H xuancong84 commented 24 days ago HE

@lamblin any idea why it diverges?
Actually, running on CPU gives more reproducible results. You should run it on GPU. Anyway, Theano has
some serious bugs, | no longer use it.
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[Selsam and Liang 2017]

Developing Bug-Free ML Systems

—— Formal specification
def gsplus_spec (f:R > R): Prop :=
Vx, fx=Vsplusx

—— Incorrect implementation
def gsplus(x:R):R:=1/(1 + exp x)

—— Proof

theorem gsplus_correct : gsplus_spec gsplus =
—— first take a few actions to simplify the goal,
—— leaving the unprovable goal:
——X:RFE1/(1 +expx)=(expx)/ (]l +expx)

—— Revised implementation
def gsplus (x:R): R :=(exp x)/ (1 + exp x)

—— Revised proof
theorem gsplus_correct : gsplus_spec gsplus :=
—— now the proof goes through successfully

—— Execute with floating point numbers
v_eval gsplus m —— answer: (.958576
20



[Cai, Shin, and Song 2017]

Provable Generalization via Recursion

Verification of Perfect Generalization

We successfully verified a learned recursive program for each task via the
oracle matching procedure.

o XOtor ¥
Topological Sort

Bubble Sort Quicksort
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Summary

Formal verification can be used in many contexts:
e test-time attacks
e training-time attacks
e implementation bugs

e checking generalization

High-level ideas:
e cast as optimization problem: rich set of tools
e train/optimize against certificate
e re-design system to be amenable to proof

22



Are we veritying the right thing?

“Real” goal not easy to state:
e (°°-perturbations are arbitrary
e |ow test error = specific inputs could still be bad
e what does security even mean for non-convex models?

How do we specify our real end goals?
e “my car won't crash”
e "my newsfeed won't disseminate propaganda”

e “my trading algorithm won't lose $$%"
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