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Why Prove Things?

Attackers often have more motivation/resources than defenders

Heuristic defenses: arms race between attack and defense

Proofs break the arms race, provide absolute security

• for a given threat model...
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Example: Adversarial Test Images
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Example: Adversarial Test Images

[Szegedy et al., 2014]: first discovers adversarial examples

[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure

[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail

[Madry et al., 2017]: a secure network, finally??
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[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure

[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail

[Madry et al., 2017]: a secure network, finally??

1 proof = 3 years of research
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Formal Verification is Hard

• Traditional software: designed to be secure

• ML systems: learned organically from data, no explicit design
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Formal Verification is Hard

• Traditional software: designed to be secure

• ML systems: learned organically from data, no explicit design

Hard to analyze, limited levers

Other challenges:

• adversary has access to sensitive parts of system

• unclear what spec should be (car doesn’t crash?)
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What To Prove?

• Security against test-time attacks

• Security against training-time attacks

• Lack of implementation bugs
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Test-time Attacks

Adversarial examples:

Can we prove no adversarial examples exist?
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Formal Goal

Goal

Given a classifier f : Rd → {1, . . . , k}, and an input x, show
that there is no x′ with f(x) 6= f(x′) and ‖x− x′‖ ≤ ε.

• Norm: `∞-norm: ‖x‖ = maxdj=1 |xj |

• Classifier: f is a neural network
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Approach 1: Reluplex

Assume f is a ReLU network: layers x(1), . . . , x(L), with

x
(l+1)
i = max(a

(l)
i · x(l), 0)

Want to bound maximum change in output x(L).

Can write as an integer-linear program (ILP):

y = max(x, 0) ⇐⇒
x ≤ y ≤ x+ b ·M,
0 ≤ y ≤ (1− b) ·M,
b ∈ {0, 1}

Check robustness on 300-node networks

• time ranges from 1s to 4h (median 3m-4m)

[Katz, Barrett, Dill, Julian, Kochenderfer 2017]

7



Approach 2: Relax and Dualize

Still assume f is ReLU

Can write as a non-convex quadratic program instead.

[Raghunathan, S., Liang]
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Approach 2: Relax and Dualize

Still assume f is ReLU

Can write as a non-convex quadratic program instead.

Every quadratic program can be relaxed to a semi-definite program

Advantages:

• always polynomial-time

• duality: get differentiable upper bounds

• can train against upper bound to generate robust networks

[Raghunathan, S., Liang]
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Results
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Results
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What To Prove?

• Security against test-time attacks

• Security against training-time attacks

• Lack of implementation bugs
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Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all
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Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all

Huge issue in practice...

How can we keep adversary from subverting the model?
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Formal Setting

Adversarial game:

• Start with clean dataset Dc = {x1, . . . , xn}
• Adversary adds εn bad points Dp

• Learner trains model on D = Dc∪Dp, outputs model θ and incurs
loss L(θ)

Learner’s goal: ensure L(θ) is low no matter what adversary does

• under a priori assumptions,

• or for a specific dataset Dc.
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Formal Setting

Adversarial game:

• Start with clean dataset Dc = {x1, . . . , xn}
• Adversary adds εn bad points Dp

• Learner trains model on D = Dc∪Dp, outputs model θ and incurs
loss L(θ)

Learner’s goal: ensure L(θ) is low no matter what adversary does

• under a priori assumptions,

• or for a specific dataset Dc.

In high dimensions, most algorithms fail!
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Learning from Untrusted Data

A priori assumption: covariance of data is bounded by σ.

[Charikar, S., Valiant 2017]
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Learning from Untrusted Data

A priori assumption: covariance of data is bounded by σ.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

Growing literature: 15+ papers since 2016 [DKKLMS16/17, LRV16,
SVC16, DKS16/17, CSV17, SCV17, L17, DBS17, KKP17, S17, MV17]

[Charikar, S., Valiant 2017]

13



What about certifying a specific algorithm on a specific data set?
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Certified Defenses for Data Poisoning
[S., Koh, and Liang 2017]
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Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximizeθ̂,Dp
L(θ̂) subject to θ̂ = argminθ

∑
x∈Dc∪Dp

`(θ;x),

Dp ⊆ F
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Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximizeθ̂,Dp
L(θ̂) subject to θ̂ = argminθ

∑
x∈Dc∪Dp

`(θ;x),

Dp ⊆ F

(Very) NP-hard in general

Key insight: approximate test loss by train loss, can then upper bound
via a saddle point problem (tractable)

• automatically generates a nearly optimal attack
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Results
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What To Prove?

• Security against test-time attacks

• Security against training-time attacks

• Lack of implementation bugs
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Developing Bug-Free ML Systems
[Selsam and Liang 2017]
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Provable Generalization via Recursion
[Cai, Shin, and Song 2017]

21



Summary

Formal verification can be used in many contexts:

• test-time attacks

• training-time attacks

• implementation bugs

• checking generalization

High-level ideas:

• cast as optimization problem: rich set of tools

• train/optimize against certificate

• re-design system to be amenable to proof
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Are we verifying the right thing?

“Real” goal not easy to state:

• `∞-perturbations are arbitrary

• low test error =⇒ specific inputs could still be bad

• what does security even mean for non-convex models?

How do we specify our real end goals?

• “my car won’t crash”

• “my newsfeed won’t disseminate propaganda”

• “my trading algorithm won’t lose $$$”
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