Provably Secure Machine Learning

Jacob Steinhardt

ARO Adversarial Machine Learning Workshop
September 14, 2017

Why Prove Things?

Attackers often have more motivation /resources than defenders

Heuristic defenses: arms race between attack and defense

Proofs break the arms race, provide absolute security
e for a given threat model...

Example: Adversarial Test Images

“panda” “gibbon”

57.7% confidence 99.3% confidence

Example: Adversarial Test Images

“panda” “gibbon”

57.7% confidence 99.3% confidence

[Szegedy et al., 2014]: first discovers adversarial examples

[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure
[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail
[Madry et al., 2017]: a secure network, finally??

Example: Adversarial Test Images

“panda”

confidence

[Szegedy et al., 2014]: first discovers adversarial examples

[Goodfellow, Shlens, Szegedy, 2015]: Fast Gradient Sign Method (FGSM) + adversarial training

[Papernot et al., 2015]: defensive distillation

[Carlini and Wagner, 2016]: distillation is not secure
[Papernot et al., 2017]: FGSM + distillation only make attacks harder to find

[Carlini and Wagner, 2017]: all detection strategies fail
[Madry et al., 2017]: a secure network, finally??

1 proof = 3 years of research

Formal Verification i1s Hard

hidden layer 1 hidden layer 2 hidden layer 3

get([] arr, index){ input layer
(index > arr.length){
RuntimeException();

arr[index];

e Traditional software: designed to be secure
e ML systems: learned organically from data, no explicit design

Formal Verification i1s Hard

hidden layer 1 hidden layer 2 hidden layer 3

get([] arr, index){ w1 BT o
(index > arr.length){ S 0 0 = ot ver
RuntimeException(); e vl

arr[index]: O AN e

e Traditional software: designed to be secure
e ML systems: learned organically from data, no explicit design

Hard to analyze, limited levers

Formal Verification i1s Hard

get([] arr, index){ e P T T
(index > arr.length){ S VT = S
RuntimeException(); . s
} , R
arr[index]; N\U 0

e Traditional software: designed to be secure
e ML systems: learned organically from data, no explicit design

Hard to analyze, limited levers

Other challenges:
e adversary has access to sensitive parts of system

e unclear what spec should be (car doesn't crash?)

What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs

What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs

Test-time Attacks

Adversarial examples:

“panda” “gibbon”

C7 TW

57.7% confidence 09.3% confidence

Can we prove no adversarial examples exist?

Formal Goal

- Goal

Given a classifier f : RY — {1,...,k}, and an input z, show
that there is no " with f(x) # f(2') and ||z — 2/|| <.

e Norm: ¢*°-norm: ||z| = max?zl |z

e Classifier: f is a neural network

[Katz, Barrett, Dill, Julian, Kochenderfer 2017]

Approach 1: Reluplex

Assume f is a ReLU network: layers (1), ... z(5) with
:UEZ—H) = max(az(-l) .z 0)

Want to bound maximum change in output z(%).

Can write as an integer-linear program (ILP):

y = max(x,0) <
r<y<zx+b-M,
0<y<(1-0) M,
be{0,1}

Check robustness on 300-node networks

e time ranges from 1s to 4h (median 3m-4m)

[Raghunathan, S., Liang]

Approach 2: Relax and Dualize

Still assume f is RelLU

Can write as a non-convex quadratic program instead.

[Raghunathan, S., Liang]

Approach 2: Relax and Dualize

Still assume f is RelLU

Can write as a non-convex quadratic program instead.

Every quadratic program can be relaxed to a semi-definite program

[Raghunathan, S., Liang]

Approach 2: Relax and Dualize

Still assume f is RelLU

Can write as a non-convex quadratic program instead.

Every quadratic program can be relaxed to a semi-definite program

Advantages:
e always polynomial-time
e duality: get differentiable upper bounds

e can train against upper bound to generate robust networks

Zero - one loss

Results

MNIST Dataset

1.0 . o
r
0.8/ K
’l
r
0.6} ’
:‘
I
0.4} '
' ' -=-- Attack
: — SDP
0.2 ’ — Spectral
r
o — Frobenius

00 ' ' ' ' ' '
000 0.02 0.04 0.06 008 0.10 012 014 0.16
€

Zero - one loss

1.0

O
o

O
o

©
n~

©
N

o
o

Results

MNIST 1 vs 7

= = Attack (Weight decay)
- SDP bound (Weight decay)
- = Attack (SDP training)

SDP bound (SDP training)

50

100 150
Training epoch

200

What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs

10

Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all

11

Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all

Huge issue in practice...

Oy a4

11

Training-time attacks

Attack system by manipulating training data: data poisoning

Traditional security: keep attacker away from important parts of system

Data poisoning: attacker has access to most important part of all

Huge issue in practice...

Oy a4

How can we keep adversary from subverting the model?

11

Formal Setting

Adversarial game:

e Start with clean dataset D, = {x1,...,z,}

e Adversary adds en bad points D,

e Learner trains model on D = D.UD,, outputs model 6 and incurs
loss L(6)

Learner’s goal: ensure L(f) is low no matter what adversary does

e under a priori assumptions,
e or for a specific dataset D...

12

Formal Setting

Adversarial game:

e Start with clean dataset D, = {x1,...,z,}

e Adversary adds en bad points D,

e Learner trains model on D = D.UD,, outputs model 6 and incurs
loss L(6)

Learner’s goal: ensure L(f) is low no matter what adversary does

e under a priori assumptions,
e or for a specific dataset D...

In high dimensions, most algorithms fail!

12

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

[Charikar, S., Valiant 2017]

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

13

[Charikar, S., Valiant 2017]

Learning from Untrusted Data

A priori assumption: covariance of data is bounded by o.

Theorem: as long as we have a small number of “verified” points, can
be robust to any fraction of adversaries (even e.g. 90%).

Growing literature: 154 papers since 2016 [DKKLMS16/17, LRV16,
SVC16, DKS16/17, CSV17, SCV17, L17, DBS17, KKP17, S17, MV17]

13

What about certifying a specific algorithm on a specific data set?

14

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

def

0 = arg ming L(6; D)

Model

15

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

\ J Poisoned %3
- detf

p, = argming L(0; 0. UD,) «— training data
D,

D,| = ¢[D.]

Model

15

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Outlier removal

_;E’

Defender discards outliers
outside some feasible set F

15

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

Poisoned%g
o def

Op, = argming L(0; D UD,) <+— training data
D,

Model

15

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

l Poisoned%g
- def

Op, = argming L(0; (D . UD,)NF) < training data

\ Dp

",'C'

15

[S., Koh, and Liang 2017]

Certified Defenses for Data Poisoning

Clean
training data

Poisoned%%
o def

Op, = argming L(0; (D . UD,)NF) < training data
D,

What's the worst case
test loss over all
possible attacks?

Model

15

Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximizeg , L(A) subject to § = argmin, > _zep,up, L0 2),
D, CF

16

Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximize; r, L(A) subject to § = argmin, > _zep,up, L0 2),
D, CF

(Very) NP-hard in general

16

Impact on training loss

Worst-case impact is solution to bi-level optimization problem:

maximize; r, L(#) subject to # = argmin, erDcqu 0(0;x),
D, CF

(Very) NP-hard in general

Key insight: approximate test loss by train loss, can then upper bound
via a saddle point problem (tractable)

e automatically generates a nearly optimal attack

16

Results

MNIST (1 vs. 7)

0.07

1]
)]
(@]
©» 0.05 -~ Upper bound U™
E — Atk: train loss L(6; D U Dp)
= — Atk: train loss L(6; D)
0.03 — Atk: test loss L(6)

0.0 0.1 0.2 0.3
€ (fraction of poisoned data added)

17

Distance along orthonormal vector

Results

MNIST (1 vs. 7)

Fstab

?Fslai)

= -

Clean,y =+1 | | gl
Poisoned, y = +1 O
Clean,y=-1 i

Poisoned, y = -1

' Fsphere

-100 -75 -50 -25 00 2.5 5.0
Distance along vector between true centroids

7.5

17

Results

IMDB sentiment analysis

5 P Fsiab, Fsiab
- F

IFspr';l'E re Fﬁpherei

—1D . . !-"r .

-12

B -40 -35 -30 -26 -20 -15 -10 -5 0 5
Distance along vector between true centroids

11% --> 23% error with 3% poisoned data

What To Prove?

e Security against test-time attacks

e Security against training-time attacks

e Lack of implementation bugs

18

Theano/Theano =~ ® Watch~ 512 *S

Code @ Issues 591 Pull requests 114 ||| Boards & Reports Projects 0 Wiki

Insidious random data/memory corruption bug causing
Incorrect computation and training divergence #4//0

(CAHLILNE xuancong84 opened this issue on Jul 20, 2016 - 17 comments

u xuancong84 commented on Jul 20, 2016 = edited g

It seems that sometimes by chance, Theano's (for all versions including bleeding-edge) internal memory
state can get corrupted silently, with all subsequent training/testing operations produces erroneous results
without throwing any exceptions/warnings. The error will accumulate until some point when the training
starts to always diverge. The problem can be solved by aborting the current process, reloading the last-
known good model and resuming training.

19

. Theano/Theano :=~ G Watch > 512 *S

Code @ Issues 591 1’1 Pull requests 114 ||| Boards & Reports I'l| Projects 0 Wiki

Insidious random data/memory corruption bug causing
Incorrect computation and training divergence #4//0

(CAHLILNE xuancong84 opened this issue on Jul 20, 2016 - 17 comments

u xuancong84 commented on Jul 20, 2016 = edited F @

It seems that sometimes by chance, Theano's (for all versions including bleeding-edge) internal memory
state can get corrupted silently, with all subsequent training/testing operations produces erroneous results
without throwing any exceptions/warnings. The error will accumulate until some point when the training
starts to always diverge. The problem can be solved by aborting the current process, reloading the last-
known good model and resuming training.

@ lamblin closed this 24 days ago

H xuancong84 commented 24 days ago HE

@lamblin any idea why it diverges?
Actually, running on CPU gives more reproducible results. You should run it on GPU. Anyway, Theano has
some serious bugs, | no longer use it.

19

[Selsam and Liang 2017]

Developing Bug-Free ML Systems

—— Formal specification
def gsplus_spec (f:R > R): Prop :=
Vx, fx=Vsplusx

—— Incorrect implementation
def gsplus(x:R):R:=1/(1 + exp x)

—— Proof

theorem gsplus_correct : gsplus_spec gsplus =
—— first take a few actions to simplify the goal,
—— leaving the unprovable goal:
——X:RFE1/(1 +expx)=(expx)/ (]l +expx)

—— Revised implementation
def gsplus (x:R): R :=(exp x)/ (1 + exp x)

—— Revised proof
theorem gsplus_correct : gsplus_spec gsplus :=
—— now the proof goes through successfully

—— Execute with floating point numbers
v_eval gsplus m —— answer: (.958576
20

[Cai, Shin, and Song 2017]

Provable Generalization via Recursion

Verification of Perfect Generalization

We successfully verified a learned recursive program for each task via the
oracle matching procedure.

o XOtor ¥
Topological Sort

Bubble Sort Quicksort

21

Summary

Formal verification can be used in many contexts:
e test-time attacks
e training-time attacks
e implementation bugs

e checking generalization

High-level ideas:
e cast as optimization problem: rich set of tools
e train/optimize against certificate
e re-design system to be amenable to proof

22

Are we veritying the right thing?

“Real” goal not easy to state:
e (°°-perturbations are arbitrary
e |ow test error = specific inputs could still be bad
e what does security even mean for non-convex models?

How do we specify our real end goals?
e “my car won't crash”
e "my newsfeed won't disseminate propaganda”

e “my trading algorithm won't lose $$%"

23

Acknowledgments

Collaborators:

Funding:

reedom to innovate

! fufyfe

INSTITUTE

@ |

NIPS Workshop on Secure ML: Please submit your work!

24

